تعیین ظرفیت بهینۀ واحدهای فتوولتائیک برای مشترکین صنعتی غیر دولتی بالای یک مگاوات با در نظر گرفتن قواعد بازار برق ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، گروه برق، دانشکدۀ مهندسی، دانشگاه شهید چمران اهواز، ایران

2 دانشیار، گروه برق، دانشکدۀ مهندسی، دانشگاه شهید چمران اهواز، ایران

10.22059/ses.2024.378041.1075

چکیده

هدف کلی این مقاله، تعیین ظرفیت بهینۀ واحدهای فتوولتائیک برای مشترکین صنعتی بالای یک مگاوات مشمول مادۀ 16 قانون حمایت از تولید دانش‌‏بنیان در راستای کاهش هزینه‏های تأمین برق این مشترکین است. با توجه به گزینه‏های موجود در بازار برق ایران جهت تأمین برق مورد نیاز این مشترکین، این مقاله نوعی مدل بهینه‏سازی برای تعیین ظرفیت بهینۀ واحدهای فتوولتائیک و همچنین، تعیین سهم بهینۀ خرید توان از طریق قرارداد دوجانبه ارائه می‏‏دهد که دارای دو هدف کلی کمینه‏سازی هزینه‏های سرمایه‏گذاری و کمینه‏سازی هزینه‏های تأمین برق مشترکین صنعتی بالای یک مگاوات بخش غیر دولتی است. مدل پیشنهادی بر پایۀ ساختار تعرفۀ موجود در کشور ایران، برای محاسبۀ قبض برق مشترکین صنعتی مشمول که یک تعرفۀ ترکیبی است طراحی شده و شرایط اقلیمی استان خوزستان در محاسبۀ میزان انرژی قابل دریافت از واحد فتوولتائیک در نظر گرفته شده است. مسئلۀ بهینه‏سازی با استفاده از الگوریتم ژنتیک حل شده و برای یک مشترک صنعتی با دیماند قراردادی 2 مگاوات تحت سناریوهای مختلف مورد بررسی قرار گرفته است. در همۀ موارد، نتایج به‌دست‌آمده مؤثر بودن مدل پیشنهادی را نشان می‏دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determining the Optimal Capacity of Photovoltaic Units for Non-Governmental Industrial Customers Above one Megawatt, Considering Electricity Market Rules in Iran

نویسندگان [English]

  • Davood Sheikh Soleimani 1
  • Elaheh Mashhour 2
1 Master of Science, Department of Electrical Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2 Associate Professor, Department of Electrical Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
چکیده [English]

The overall objective of this paper is to determine the optimal capacity of photovoltaic (PV) units for industrial customers above one megawatt who are eligible under Article 16 of the Knowledge-Based Production Support Law to reduce their electricity supply costs. Considering the available options in the Iranian electricity market to meet the electricity demand of these customers, the paper presents an optimization model to determine the optimal PV unit capacity and the optimal share of power purchase through bilateral contract. The model has two main objectives: minimizing investment costs and minimizing electricity supply costs for industrial customers above one megawatt in the non-governmental sector. The proposed model is designed based on the existing tariff structure in Iran to calculate electricity bills for eligible industrial customers, which involve a combined tariff. The climatic conditions of Khuzestan Province are considered when calculating the amount of energy receivable from the PV unit. The optimization problem was solved using a genetic algorithm and was applied to an industrial customer with a contract demand of 2 MW under various scenarios. In all cases, the results demonstrate the effectiveness of the proposed model.

کلیدواژه‌ها [English]

  • Photovoltaic
  • Bilateral Contract
  • Article 16 of the Law on Supporting Knowledge-Based Production
  • Industrial Customers
  • Cost of Electricity Supply
  • Jäger-Waldau A. PV Status Report 2016. Publications Office of the European Union. 2019.
  • International Energy Agency (IEA). Trends in photovoltaic applications. Report IEA-T1-43. 2022.
  • Renewable Energy and Energy Efficiency Organization (SATBA), Public Relations and International Affairs Office, International Cooperation Development Group. Statistical report of renewable energies in Iran in 2018. 2019. (In Persian)
  • Renewable Energy and Energy Efficiency Organization (SATBA). Preserving resources through development of renewable energies and electricity efficiency. Available online on https://www.satba.gov.ir/fa/satba/informationاطلاعات-آماری-.(In Persian)
  • Ministry of Energy, Iran's Main Specialized Company for Production, Transmission and Distribution of Electricity Management (TAVANIR). Notification of the procedure for determining the difference in the implementation of regulations and calculating the bills of customers with a power of more than one megawatt. 2023. (In Persian)
  • Ministry of Energy, Executive regulations of article 16 of the Knowledge-Based production leap act. 2022. (In Persian)
  • Mashhour E, Farzin H. Investigating and determining the appropriate option for purchasing electricity for costumers over 5 megawatts of the Karun oil and gas operating company through stock exchanges, bilateral or a combination of them. Research and Technology Deputy, Shahid Chamran University of Ahvaz, Electricity Research Center. 2022. (In Persian)
  • Renewable Energy and Energy Efficiency Organization (SATBA). Instructions on how to purchase guaranteed electricity from small-scale non-branch solar power plants - Industrial towns and private lands. 2020. (In Persian)
  • Marocco P, Ferrero D, Lanzini A, Santarelli M. Optimal design of stand-alone solutions based on RES+ hydrogen storage feeding off-grid communities. Energy Conversion and Management. 2021;238:114147.
  • Li N, Lukszo Z, Schmitz J. An approach for sizing a PV–battery–electrolyzer–fuel cell energy system: A case study at a field lab. Renewable and Sustainable Energy Reviews. 2023;181:113308.
  • Bourek Y, Ammari C, Pesyridis A. The integration of solar-hydrogen hybrid renewable energy systems in oil and gas industries for energy efficiency: Optimal sizing using Fick's Law optimisation Algorithm. Energy Conversion and Management. 2024;308:118372.
  • Colarossi D, Principi P. Optimal sizing of a photovoltaic/energy storage/cold ironing system: Life Cycle cost approach and environmental analysis. Energy Conversion and Management. 2023;291:117255.
  • Lan H, Wen S, Hong YY, David CY, Zhang L. Optimal sizing of hybrid PV/diesel/battery in ship power system. Applied energy. 2015;158:26-34.
  • Al Afif R, Ayed Y, Maaitah ON. Feasibility and optimal sizing analysis of hybrid renewable energy systems: A case study of Al-Karak, Jordan. Renewable Energy. 2023 Mar 1;204:229-49.
  • Fachrizal R, Shepero M, Åberg M, Munkhammar J. Optimal PV-EV sizing at solar powered workplace charging stations with smart charging schemes considering self-consumption and self-sufficiency balance. Applied Energy. 2022;307:118139.
  • Dumas D, Gosselin L. Optimizing photovoltaic systems to decarbonize residential arctic buildings considering real consumption data and temporal mismatch. Solar Energy. 2024;275:112560.
  • Lu Y, Wang S, Yan C, Huang Z. Robust optimal design of renewable energy system in nearly/net zero energy buildings under uncertainties. Applied energy. 2017;187:62-71.
  • Mehrtash M, Capitanescu F, Heiselberg PK, Gibon T, Bertrand A. An enhanced optimal PV and battery sizing model for zero energy buildings considering environmental impacts. IEEE Transactions on Industry Applications. 2020;56(6):6846-56.
  • Niveditha N, Singaravel MR. Optimal sizing of hybrid PV–Wind–Battery storage system for Net Zero Energy Buildings to reduce grid burden. Applied Energy. 2022;324:119713.
  • Chen Q, Kuang Z, Liu X, Zhang T. Optimal sizing and techno-economic analysis of the hybrid PV-battery-cooling storage system for commercial buildings in China. Applied Energy. 2024;355:122231.
  • Niveditha N, Singaravel MR. Optimal sizing of PV-Wind generators with a smart EV charging framework to build grid friendly Net Zero Energy Campus. Sustainable Cities and Society. 2024:105575.
  • TBM-72-320P ̴330P PV Module Product Datasheet V3_EN, Available online on tabanenergy.ir
  • Ministry of Energy. Resolution on announcing the guaranteed purchase price of electricity from renewable solar and wind power plants, biomass, hydropower and expansion turbines. 2023. (In Persian)