تحلیل پیوند آب، انرژی و محیط زیست در تصفیۀ پساب، تولید سوخت زیستی و تثبیت کربن با استفاده از میکروجلبک‌ها

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی انرژی‏های تجدیدپذیر، دانشکدۀ مهندسی مکانیک و انرژی، دانشگاه شهید بهشتی

10.22059/ses.2023.365967.1040

چکیده

همبست آب، انرژی، غذا و محیط زیست و ضرورت حفظ این منابع برای ادامۀ حیات به ایجاد امنیت پایدار در سیستم‏های انرژی می‏انجامد. در این مطالعه به تحلیل پیوند آب، انرژی و محیط زیست در تولید سوخت‏های زیستی نسل سوم با استفاده از کشت ریزجلبک‏ها در پساب‏های شهری با هدف تصفیۀ زیستی، تولید سوخت و تثبیت کربن پرداخته شده است. در این زمینه، ضمن بررسی تأثیر ظرفیت تصفیۀ زیستی پساب با استفاده از گونۀ جلبکی بر بازیابی منابع آبی در محیط نرم‌افزار LEAP، اثر جایگزینی سوخت تولیدی در سیستم حمل‌ونقل عمومی شهری بر میزان انتشار آلاینده‏ها با لحاظ نسبت‏های اختلاط مختلف گازوئیل با بیودیزل (شامل B5، B10، B20، B50) با استفاده از نرم‌افزار ENERGYPLAN مورد بررسی قرار گرفت. نتایج حاصل نشان داد بیودیزل تولیدی در نسبت‏های یادشده به‌ترتیب 25/4، 58/8، 43/17 و 78/45 درصد از کل انرژی مورد نیاز سالانه را تأمین خواهد کرد. این میزان جایگزینی به‌ترتیب معادل کاهش 9/2، 9/5، 7/12 و 7/31 درصد در میزان انتشار CO2 است. همچنین با لحاظ نرخ رشد سالانۀ 5 درصد افزایش در ورودی تصفیه‌خانۀ فاضلاب، پس از 12 سال می‏توان ضمن تأمین تقاضای 46 درصد انرژی مورد نیاز سالانه از محل B50 و کاهش انتشار سالانه 32 درصد دی‏اکسید کربن، مدل پیشنهادی می‏تواند به کاهش 414 میلیون دلاری در هزینۀ انتشار کربن منجر شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Water-Energy-Environment Nexus Assessment: Phycoremediation, Biofuel Production, and Carbon Capture Using Microalgae

نویسندگان [English]

  • Sepideh Abedi
  • Arezoo Ahmadinia
  • Sajad Eidipour
Department of Renewable Energy Engineering, Faculty of Mechanic and Energy, University of Shahid Beheshti, Tehran, Iran
چکیده [English]

This study analyzes the water-energy-environment nexus by simultaneously evaluating the potential of microalgae for phycoremediation, biofuel production, and carbon capture. The LEAP software was employed to investigate the treatment and biodiesel production capacity. The impact of replacing biofuel in the urban public transportation system, considering different mixing ratios of biodiesel including B5, B10, B20, and B50, was also studied using EnergyPLAN software. The results showed that the produced biodiesel with these ratios could provide 4.25%, 8.58%, 17.43%, and 45.78% of the total annual energy requirement, respectively. These replacement rates correspond to a reduction of 2.9%, 5.9%, 12.7%, and 31.7% in CO2 emissions. Furthermore, assuming a 5% annual growth rate in the input of the wastewater treatment plant, after 12 years, the proposed model can reduce the annual carbon emission costs by $414 million while meeting 46% of the annual energy demand using B50 and decrease annual CO2 emissions by 32%.

کلیدواژه‌ها [English]

  • Water-Energy-Environment Nexus
  • Biofuel
  • Microalgae
  • ENERGYPLAN
  • LEAP
[1].          Abedi S, Nozarpour A, Tavakoli O. “Evaluation of biogas production rate and leachate treatment in Landfill through a water-energy nexus framework for integrated waste management,” Energy Nexus., vol. 11, p. 100218, 2023, doi: 10.1016/j.nexus.2023.100218.
[2]. M. Crippa et al., “CO2 emissions of all world countries: JRC/IEA/PBL 2022 report,” Publications Office, LU., 2022.
 [3]. A. Wicaksono and D. Kang, “Nationwide simulation of water, energy and food nexus: Case study in South Korea and Indonesia,” J. Hydro-environment Res., vol. 22, pp. 70–87, 2019, doi: 10.1016/j.jher.2018.10.003.
[4].          E. Martinez-Hernandez, M. Leach, and A. Yang, “Understanding water-energy-food and ecosystem interactions using the nexus simulation tool NexSym,” Appl. Energy, vol. 206, pp. 1009–1021, 2017, doi: 10.1016/j.apenergy.2017.09.022.
[5].          M. C. Rulli, D. Bellomi, A. Cazzoli, G. De Carolis, and P. D. Odorico, “The water-land-food nexus of first- generation biofuels,” Nat. Scientific reports., vol. 6, no. 1, p. 22521, 2016, doi: 10.1038/srep22521.
[6].          M. Melikoglu and A. M. Cinel, “Environmental Technology and Innovation Food waste-water-energy nexus: Scrutinising sustainability of biodiesel production from sunflower oil consumption wastes in Turkey till 2030,” Environ. Technol. Innov., vol. 17, p. 100628, 2020, doi: 10.1016/j.eti.2020.100628.
[7].          J. Hill, E. Nelson, D. Tilman, S. Polasky, and D. Tiffany, “Pnas-Biofuels-2006,” vol. 103, no. 30, p. 5, 2006.
[8].          G. B. Leite, A. E. M. Abdelaziz, and P. C. Hallenbeck, “Algal biofuels: Challenges and opportunities,” Bioresour. Technol., vol. 145, pp. 134–141, 2013, doi: 10.1016/j.biortech.2013.02.007.
[9].          C. Y. Wei, T. C. Huang, and H. H. Chen, “Biodiesel production using supercritical methanol with carbon dioxide and acetic acid,” J. Chem., vol. 2013, 2013, doi: 10.1155/2013/789594.
[10].        I. M. Atadashi, M. K. Aroua, A. R. Abdul Aziz, and N. M. N. Sulaiman, “High quality biodiesel obtained through membrane technology,” J. Memb. Sci., vol. 421–422, pp. 154–164, 2012, doi: 10.1016/j.memsci.2012.07.006.
[11].        Abedi S, Astaraei FR, Ghobadian B, Tavakoli O, Jalili H, Greenwell HC, et al. “Decoupling a novel Trichormus variabilis-Synechocystis sp. interaction to boost phycoremediation,” Scientific reports., vol. 9, p. 2511, 2019, doi: 10.1038/s41598-019-38997-7.
[12].        Hajinezhad A, Abedi S, Ghobadian B, Noorollahi Y. “Biodiesel production from Norouzak (Salvia lerifolia) seeds as an indigenous source of bio fuel in Iran using ultrasound,” Energy Conversion and Management., vol. 99, pp. 132-40, 2015, doi: 10.1016/j.renene.2019.01.057.
 
[13].        M. Ahmad et al., “Base catalyzed transesterification of sunflower oil biodiesel,” African J. Biotechnol., vol. 9, no. 50, pp. 8630–8635, 2010, doi: 10.5897/AJB10.1229.
[14].        D. M. Kargbo, “Biodiesel production from municipal sewage sludges,” Energy and Fuels., vol. 24, no. 5, pp. 2791–2794, 2010, doi: 10.1021/ef1001106.
[15].        A. Demirbas, “Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification,” Energy Convers. Manag., vol. 50, no. 4, pp. 923–927, 2009, doi: 10.1016/j.enconman.2008.12.023.
[16].        A. B. M. S. Hossain and A. N. Boyce, “Biodiesel production from waste sunflower cooking oil as an environmental recycling process and renewable energy,” Bulg. J. Agric. Sci., vol. 15, no. 4, pp. 312–317, 2009.
[17].        J. Van Gerpen, “Biodiesel processing and production,” vol. 86, pp. 1097–1107, 2005, doi: 10.1016/j.fuproc.2004.11.005.
[18].        G. W. Roberts, M. O. P. Fortier, B. S. M. Sturm, and S. M. Stagg-Williams, “Promising pathway for algal biofuels through wastewater cultivation and hydrothermal conversion,” Energy and Fuels., vol. 27, no. 2, pp. 857–867, 2013, doi: 10.1021/ef3020603.
[19].        Y. Chisti, “Constraints to commercialization of algal fuels,” J. Biotechnol., vol. 167, no. 3, pp. 201–214, 2013, doi: 10.1016/j.jbiotec.2013.07.020.
[20].        J. D. Sheehan, T. Dunahay, J. R. Benemann, and P. Roessler, “A Look Back at the U.S. Department of Energy’s Aquatic Species,” Eur. Phys. J. C., vol. 72, no. 6, p. 14, 2012.
[21].        B. H. Um and Y. S. Kim, “Review: A chance for Korea to advance algal-biodiesel technology,” J. Ind. Eng. Chem., vol. 15, no. 1, pp. 1–7, 2009, doi: 10.1016/j.jiec.2008.08.002.
[22].        B. J. Gallagher, “The economics of producing biodiesel from algae,” Renew. Energy, vol. 36, no. 1, pp. 158–162, 2011, doi: 10.1016/j.renene.2010.06.016.
[23].        N. F. Y. Tam and Y. S. Wong, “Wastewater nutrient removal by Chlorella pyrenoidosa and Scenedesmus sp.,” Environ. Pollut., vol. 58, no. 1, pp. 19–34, 1989, doi: 10.1016/0269-7491(89)90234-0.
[24].        O. Summerton, “The Bernean Grid,” Trans. Anal. Bull., vol. 8, no. 1, pp. 27–29, 1978, doi: 10.1177/036215377800800107.
[25].        A. L. Ahmad, N. H. M. Yasin, C. J. C. Derek, and J. K. Lim, “Microalgae as a sustainable energy source for biodiesel production: A review,” Renew. Sustain. Energy Rev., vol. 15, no. 1, pp. 584–593, 2011, doi: 10.1016/j.rser.2010.09.018.
[26].        E. Zhang, B. Wang, Q. Wang, S. Zhang, and B. Zhao, “Ammonia-nitrogen and orthophosphate removal by immobilized Scenedesmus sp. isolated from municipal wastewater for potential use in tertiary treatment,” Bioresour. Technol., vol. 99, no. 9, pp. 3787–3793, 2008, doi: 10.1016/j.biortech.2007.07.011.
[27].        A. Ruiz-Marin, L. G. Mendoza-Espinosa, and T. Stephenson, “Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater,” Bioresour. Technol., vol. 101, no. 1, pp. 58–64, 2010, doi: 10.1016/j.biortech.2009.02.076.
[28].        P. S. Lau, N. F. Y. Tam, and Y. S. Wong, “Effect of algal density on nutrient removal from primary settled wastewater,” Environ. Pollut., vol. 89, no. 1, pp. 59–66, 1995, doi: 10.1016/0269-7491(94)00044-E.
[29].        A. A. Fathi, M. M. Azooz, and M. A. Al-Fredan, “Phycoremediation and the potential of sustainable algal biofuel production using wastewater,” Am. J. Appl. Sci., vol. 10, no. 2, pp. 189–194, 2013, doi: 10.3844/ajassp.2013.189.194.
[30].        Y. Li et al., “Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production,” Bioresour. Technol., vol. 102, no. 8, pp. 5138–5144, 2011, doi: 10.1016/j.biortech.2011.01.091.
[31].        J. Sharma et al., “Microalgal consortia for municipal wastewater treatment– Lipid augmentation and fatty acid profiling for biodiesel production,” J. Photochem. Photobiol. B Biol., vol. 202, no. p. 111638, 2020, doi: 10.1016/j.jphotobiol.2019.111638.
[32].        Ho, Shih-Hsin, et al. “Algal culture and biofuel production using wastewater,” Biofuels from algae., Second Edi. pp. 167-198, 2019. doi: 10.1016/b978-0-444-64192-2.00008-1.
[33].        G. Editorial, “Membrane reactors-Part I,” Technology,. vol. 7, no. 17, pp. 743–753, 2009, doi: 10.1002/apj.
[34].        S. Chinnasamy, A. Bhatnagar, R. Claxton, and K. C. Das, “Biomass and bioenergy production potential of microalgae consortium in open and closed bioreactors using untreated carpet industry effluent as growth medium,” Bioresour. Technol., vol. 101, no. 17, pp. 6751–6760, 2010, doi: 10.1016/j.biortech.2010.03.094.
[35].        V. Matamoros and Y. Rodríguez, “Batch vs continuous-feeding operational mode for the removal of pesticides from agricultural run-off by microalgae systems: A laboratory scale study,” J. Hazard. Mater., vol. 309, pp. 126–132, 2016, doi: 10.1016/j.jhazmat.2016.01.080.
[36].        G. T. Ding et al., “Phycoremediation of palm oil mill effluent (POME) and CO2 fixation by locally isolated microalgae: Chlorella sorokiniana UKM2, Coelastrella sp. UKM4 and Chlorella pyrenoidosa UKM7,” J. Water Process Eng., vol. 35, p. 101202, 2020, doi: 10.1016/j.jwpe.2020.101202.
[37].        C. Song, X. Hu, Z. Liu, S. Li, and Y. Kitamura, “Combination of brewery wastewater purification and CO2 fixation with potential value-added ingredients production via different microalgae strains cultivation,” J. Clean. Prod., vol. 268, p. 122332, 2020, doi: 10.1016/j.jclepro.2020.122332.
[38].        R. Piloto-Rodríguez, Y. Sánchez-Borroto, E. A. Melo-Espinosa, and S. Verhelst, “Assessment of diesel engine performance when fueled with biodiesel from algae and microalgae: An overview,” Renew. Sustain. Energy Rev., vol. 69, pp. 833–842, 2017, doi: 10.1016/j.rser.2016.11.015.
[39].        Y. Chisti, “Biodiesel from microalgae,” Biotechnol. Adv., vol. 25, no. 3, pp. 294–306, 2007, doi: 10.1016/j.biotechadv.2007.02.001.
[40].        J. A. Nieves, A. J. Aristizábal, I. Dyner, O. Báez, and D. H. Ospina, “Energy demand and greenhouse gas emissions analysis in Colombia: A LEAP model application,” Energy, vol. 169, pp. 380–397, 2019, doi: 10.1016/j.energy.2018.12.051.
[41].        N. H. Mirjat, M. A. Uqaili, K. Harijan, G. Das Walasai, M. A. H. Mondal, and H. Sahin, “Long-term electricity demand forecast and supply side scenarios for Pakistan (2015–2050): A LEAP model application for policy analysis,” Energy., vol. 165, pp. 512–526, 2018, doi: 10.1016/j.energy.2018.10.012.
[42].        N. V. Emodi, T. Chaiechi, and A. B. M. R. Alam Beg, “Are emission reduction policies effective under climate change conditions: A backcasting and exploratory scenario approach using the LEAP-OSeMOSYS Model,” Appl. Energy, vol. 236, pp. 1183–1217, 2019, doi: 10.1016/j.apenergy.2018.12.045.
[43].        G. Hu, X. Ma, and J. Ji, “Scenarios and policies for sustainable urban energy development based on LEAP model – A case study of a postindustrial city: Shenzhen China,” Appl. Energy., vol. 238, pp. 876–886, 2019, doi: 10.1016/j.apenergy.2019.01.162.
[44].        P. A. Østergaard, “Reviewing EnergyPLAN simulations and performance indicator applications in EnergyPLAN simulations,” vol. 154, pp. 921–933, 2015, doi: 10.1016/j.apenergy.2015.05.086.
[45].        Lund, Henrik, et al. “EnergyPLAN–Advanced analysis of smart energy systems,” Smart Energy., vol. 1, p. 100007, 2021, doi: 10.1016/j.segy.2021.100007.
[46].        M. G. Prina et al., “Multi-objective optimization algorithm coupled to EnergyPLAN software: the EPLANopt model,” Energy., vol. 149, 2018, doi: 10.1016/j.energy.2018.02.050.
[47].        US Energy Informationn Administration, “How much carbon dioxide is produced by burning gasoline and diesel fuel?,” US Energy Inf. Adm., pp. 2014–2015, 2014.
[48].        J. O. Ighalo et al., “Progress in Microalgae Application for CO2 Sequestration,” Clean. Chem. Eng., vol. 3, p. 100044, 2022, doi: 10.1016/j.clce.2022.100044.
[49]. Kumar, A. K., Sharma, S., Dixit, G., Shah, E., & Patel, A. “Techno-economic analysis of microalgae production with simultaneous dairy effluent treatment using a pilot-scale High Volume V-shape pond system,” Renewable Energy., vol. 145, pp. 1620-1632, 2020, doi: 10.1016/j.renene.2019.07.087.
[50]. Vázquez-Romero, B., Perales, J. A., de Vree, J. H., Böpple, H., Steinrücken, P., Barbosa, M. J.,... & Ruiz, J. “Techno-economic analysis of microalgae production for aquafeed in Norway,” Algal Research., vol. 64, p. 102679, 2022, doi: 10.1016/j.algal.2022.102679.