بهینه ‏سازی اقتصادی مدیریت خاموشی در شبکه ‏های توزیع برق

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد، گروه سیستم‏های انرژی، دانشکدۀ فناوری‏های نوین، دانشگاه علم و صنعت ایران، تهران

2 استاد، گروه سیستم‏های انرژی‏، دانشکدۀ فناوری‏های نوین، دانشگاه علم و صنعت ایران، تهران

10.22059/ses.2023.357872.1034

چکیده

در این مقاله به بهینه‏سازی روش‏های مدیریت خاموشی در شبکه‏های توزیع برق می‏پردازد. به این‌منظور روش‏های کلیدزنی، استفاده از تولیدات پراکنده و پاسخ‌گویی بار از منظر اقتصادی مورد بررسی قرار گرفته‏اند. جهت این بررسی اقتصادی، هزینۀ قطع برق که شامل هزینۀ منابع انسانی، خودرو و انرژی توزیع نشده است، محاسبه ‏شده است. با ملاحظۀ نقش کلیدی مدت‏زمان و بار تأمین‌نشده در هزینۀ قطع برق به مدل‏سازی راهکارهای مدیریت خاموشی پرداخته‏ شده است. سپس، با تحلیل حساسیت تأثیر پارامترهای مهمی همچون قیمت برق مورد بررسی قرار گرفته است. مدل پیشنهادی در شرکت توزیع برق تهران بزرگ پیاده‏سازی شده است. در بخش اول، مدل‏سازی اقتصادی قطع برق در شبکۀ توزیع معرفی‏شده است. این مدل مواردی مانند جریمه‏های تعیین‏شده توسط دولت، هزینۀ منابع انسانی، وسایل نقلیۀ حادثه و هزینۀ اتوماسیون ایستگاه‏های توزیع را محاسبه می‏کند. در بخش دوم، جریمه‏ها و تأمین انرژی موقت بهینه‏ شده است. دو رویکرد برای عرضۀ کوتاه انرژی در نظر گرفته ‏شده است. روش اول مبتنی بر تقاضا و کاهش بار در بازده پاداش است. روش دوم خرید نیرو از منابع ‏توزیع‏شده (DGS) در منطقۀ قطع است. در بخش سوم، حساسیت میزان عرضه انرژی موقت به قیمت ارائه‏شده توسط شرکت توزیع در نظر گرفته ‏شده و تأثیر آن بر بهینه‏سازی مورد بررسی قرار گرفته است.

کلیدواژه‌ها


عنوان مقاله [English]

Economic Optimization of blackout management in electricity distribution networks

نویسندگان [English]

  • Aidin Shaghaghi 1
  • Reza Dashti 2
1 School of advanced technologies, Iran University of Science and Technologies, Tehran, Iran
2 School of advanced technologies, Iran University of Science and Technologies, Tehran, Iran
چکیده [English]

This article deals with the optimization of blackout management methods in electricity distribution networks. For this purpose, keying methods, the use of distributed production, and load response have been examined from an economic perspective. For this economic analysis, the cost of a power outage, which includes the cost of human resources, vehicles, and undistributed energy, has been calculated. Considering the key role of duration and unsupplied load in the cost of a power outage, outage management solutions have been modeled. Then, the effect of important parameters such as electricity price has been investigated by sensitivity analysis. The proposed model has been implemented in the Big Tehran Electricity Distribution Company. In the first part, the economic modeling of power outages in the distribution network is introduced. The model calculates things like fines set by the government, the cost of human resources, accident vehicles, and the cost of automation of distribution stations. In the second part, fines and temporary energy supply are optimized. Two approaches are considered for the short supply of energy. The first method is demand-based and load-reduction in reward returns. The second method is to purchase power from distributed sources (DGS) in the outage area. In the third part, the sensitivity of the temporary energy supply to the price provided by the distribution company is considered and its effect on optimization is investigated.

کلیدواژه‌ها [English]

  • Distribution network outage
  • Distributed generations
  • demand-side management
  • temporary energy supply
  • Figueiredo and J. Martins, “Energy Production System Management - Renewable energy power supply integration with Building Automation System,” Energy Convers. Manag., vol. 51, no. 6, pp. 1120–1126, 2010, doi: 10.1016/j.enconman.2009.12.020.
  • -C. Chen, T. Dokic, N. Stokes, D. W. Goldberg, and M. Kezunovic, “Predicting weather-associated impacts in outage management utilizing the GIS framework,” in 2015 IEEE PES Innovative Smart Grid Technologies Latin America (ISGT LATAM), IEEE, 2015, pp. 417–422.
  • Yaolei, L. Rong, W. Kuihua, Z. Ren, and L. Zhao, “Construction and Application of Distribution Network Grid Planning System,” in Journal of Physics: Conference Series, IOP Publishing, 2020, p. 12026.
  • Yu et al., “Faulty feeder detection of single phase-earth fault based on fuzzy measure fusion criterion for distribution networks,” Int. J. Electr. Power Energy Syst., vol. 125, p. 106459, 2021.
  • Liu and N. N. Schulz, “Knowledge-based system for distribution system outage locating using comprehensive information,” IEEE Trans. Power Syst., vol. 17, no. 2, pp. 451–456, 2002.
  • Arif, S. Ma, and Z. Wang, “Online decomposed optimal outage management after natural disasters,” in 2017 Ieee Power & Energy Society General Meeting, IEEE, 2017, pp. 1–5.
  • Aditya Sai Srinivas, S. Ramasubbareddy, A. Sharma, and K. Govinda, “Optimal Energy Distribution in Smart Grid,” in Intelligent Data Engineering and Analytics: Frontiers in Intelligent Computing: Theory and Applications (FICTA 2020), Volume 2, Springer, 2021, pp. 383–391.
  • Mallaki, M. S. Naderi, M. Abedi, S. D. Manshadi, and G. B. Gharehpetian, “A novel energy-reliability market framework for participation of microgrids in transactive energy system,” Int. J. Electr. Power Energy Syst., vol. 122, p. 106193, 2020.
  • D. C. Wijayatunga and M. S. Jayalath, “Assessment of economic impact of electricity supply interruptions in the Sri Lanka industrial sector,” Energy Convers. Manag., vol. 45, no. 2, pp. 235–247, 2004.
  • Mohseni, A. C. Brent, and D. Burmester, “A demand response-centred approach to the long-term equipment capacity planning of grid-independent micro-grids optimized by the moth-flame optimization algorithm,” Energy Convers. Manag., vol. 200, p. 112105, 2019.
  • approach for optimal techno-economic planning for high renewable energy-based isolated microgrid considering cost of energy storage and demand response strategies,” Energy Convers. Manag., vol. 215, p. 112917, 2020.
  • Valencia-Salazar, C. Alvarez, G. Escrivá-Escrivá, and M. Alcázar-Ortega, “Simulation of demand side participation in Spanish short term electricity markets,” Energy Convers. Manag., vol. 52, no. 7, pp. 2705–2711, 2011.
  • Niu, Z. Tian, J. Zhu, and L. Yue, “Implementation of a price-driven demand response in a distributed energy system with multi-energy flexibility measures,” Energy Convers. Manag., vol. 208, p. 112575, 2020.
  • Schwabeneder, C. Corinaldesi, G. Lettner, and H. Auer, “Business cases of aggregated flexibilities in multiple electricity markets in a European market design,” Energy Convers. Manag., vol. 230, p. 113783, 2021.

 

  • Dai and M. Mesbahi, “Optimal power generation and load management for off-grid hybrid power systems with renewable sources via mixed-integer programming,” Energy Convers. Manag., vol. 73, pp. 234–244, 2013.
  • S. Qamber and M. Y. Al-Hamad, “Energy Consumption and Value of Lost Load Modeling for the GCC Member State Countries,” Int. J. Comput. Digit. Syst., vol. 9, no. 5, pp. 901–907, 2020.
  • Cui, S. Wang, C. Yan, and X. Xue, “Evaluation of a fast power demand response strategy using active and passive building cold storages for smart grid applications,” Energy Convers. Manag., vol. 102, pp. 227–238, 2015.
  • Chen, L. Reedman, G. Liu, L. Kang, F. Zheng, and J. Qiu, “Double-side Auction Mechanism to Address Microgrid Energy Trading and Network Resiliency,” in 2019 9th International Conference on Power and Energy Systems (ICPES), IEEE, 2019, pp. 1–6.
  • Vazinram, M. Hedayati, R. Effatnejad, and P. Hajihosseini, “Self-healing model for gas-electricity distribution network with consideration of various types of generation units and demand response capability,” Energy Convers. Manag., vol. 206, p. 112487, 2020.
  • Dorahaki, R. Dashti, and H. R. Shaker, “Optimal outage management model considering emergency demand response programs for a smart distribution system,” Appl. Sci., vol. 10, no. 21, p. 7406, 2020.