مطالعۀ موردی و مدل‌سازی مصرف انرژی ساختمان‌ها در مقیاس شهری در نرم‌افزار متلب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی مقطع دکتری مهندسی سیستم‌های انرژی، گروه انرژی‌های نو و محیط زیست، دانشگاه تهران

2 دانشجوی مقطع کارشناسی مهندسی عمران، دانشکدۀ مهندسی عمران، دانشگاه تهران

3 استادیار گروه مهندسی سیستمهای انرژی، دانشگاه علم و صنعت، تهران، ایران

10.22059/ses.2023.340522.1003

چکیده

امروزه، توسعۀ مدل‏های انرژی در مقیاس شهری از اهمیت بسیار زیادی برخوردار است و از این‏رو مورد توجه بسیاری از محققان قرار دارد. از جمله فواید این مدل‏ها می‏توان به درک میزان انرژی مصرفی اشاره کرد. این پژوهش به ارائۀ یک مدل‏سازی انرژی پویا براساس تعادل انرژی برای ساختمان‏هایی که مشخصات آن‏ها از داده‏های شهری موجود در پژوهش‏های پیشین گرفته ‏شده است، می‏پردازد. مدل ارائه‌شده با در نظر گرفتن شرایط اقلیمی و پارامترهای مورفولوژیکی در شهر اردبیل کالیبره، بهینه‏سازی و اعتبارسنجی شده‏ است. براساس تحقیق میدانی و آماری صورت‌گرفته در شهر اردبیل ایران که محوریت اصلی این پژوهش است، می‏توان به میزان مصرف انرژی در این شهر طی سال‏های گذشته دست یافت. اساس این کار از طریق آمار و پیاده‏سازی معادلات انتقال حرارت به‏ صورت مدل‏سازی الکتریکی است. این مدل‌سازی در نرم‏افزار متلب/سیمولینک صورت گرفته‏ است و در ادامه پس از شبیه‏سازی، مدل بهینه‏سازی می‏شود. نتایج حاصل از این مدل‏سازی نشان می‏دهد این مدل می‏تواند با دقت خوبی برای ساختمان‏های قدیمی به‏ کار برود، اما این داده‏ها برای تجزیه‌و‌تحلیل در مقیاس شهری برای ساختمان‏های جدید نیاز به بهبود دارند.

کلیدواژه‌ها


عنوان مقاله [English]

Case study and modeling of energy consumption of buildings on an urban scale using MATLAB software

نویسندگان [English]

  • Rahim Zahedi 1
  • Arash Gitifar 2
  • Abolfazl Ahmadi 3
1 PhD Candidate, Energy Systems Engineering, Department of Renewable Energies and Environment, University of Tehran, Tehran, Iran
2 BSc Student, Department of Civil Engineering, University of Tehran, Tehran, Iran
3 Asistant Professor, Department of Energy Systems Engineering, Iran University of Science and Technology, Tehran, Iran
چکیده [English]

Currently, the development of energy modeling on an urban scale is the goal of many types of research. These energy models are useful for understanding the amount of energy consumption. This research presents a dynamic energy modeling based on energy balance. Building specifications are taken from urban data. This model has been calibrated, optimized, and validated by considering Ardabil's climatic conditions and morphological parameters. The results of this work show that this model can be used with reasonable accuracy for old buildings. These data need to be improved for urban-scale analysis of new buildings. Based on field and statistical research conducted in Ardabil, Iran, which is the main focus of this report, this city's energy consumption during the past years can be achieved. The basis of this work is through statistics and the implementation of heat transfer equations in the form of electrical modeling. This modeling is done in MATLAB / Simulink software. The model is then optimized after simulation.

کلیدواژه‌ها [English]

  • Solar energy
  • urban data
  • residential building
  • urban model
  • energy management
  • Abergel T, Dean B, Dulac J. Towards a zero-emission, efficient, and resilient buildings and construction sector: Global Status Report 2017. UN Environ Int Energy Agency Paris, Fr. 2017;22.
  • Alberti M, Waddell P. An integrated urban development and ecological simulation model. Integr Assess. 2000;1(3):215–27.
  • Rosenow J, Cowart R, Bayer E, Fabbri M. Assessing the European Union’s energy efficiency policy: Will the winter package deliver on ‘Efficiency First’? Energy Res Soc Sci. 2017;26:72–9.
  • Hedegaard RE, Kristensen MH, Pedersen TH, Brun A, Petersen S. Bottom-up modelling methodology for urban-scale analysis of residential space heating demand response. Appl Energy. 2019;242:181–204.
  • Abbasabadi N, Ashayeri M. Urban energy use modeling methods and tools: A review and an outlook. Build Environ. 2019;161:106270.
  • Chen Q, Fu R-H, Xu Y-C. Electrical circuit analogy for heat transfer analysis and optimization in heat exchanger networks. Appl Energy. 2015;139:81–92.
  • Chen Y, Hong T, Piette MA. Automatic generation and simulation of urban building energy models based on city datasets for city-scale building retrofit analysis. Appl Energy. 2017;205:323–35.
  • Cowart R. Unlocking the promise of the Energy Union:“efficiency first” is key,”. Regul Assist Proj Montpelier, VT. 2014;
  • Rosenow J, Bayer E, Genard Q, Toporek M, Rososińska B. Efficiency First: From principle to practice. Real world examples from across Europe. Energy Union Choices. 2016;
  • Ohshita S, Johnson K. Resilient Urban Energy: Making City Systems Energy Efficient, Low Carbon and Resilient in a Changing Climate. Eur Counc an Energy Effic Econ https//www eceee org/library/conference_proceedings/eceee_Summer_ Stud. 2017;

 

  • Sharifi A, Yamagata Y. Principles and criteria for assessing urban energy resilience: A literature review. Renew Sustain Energy Rev. 2016;60:1654–77.
  • Sharifi A, Yamagata Y. A conceptual framework for assessment of urban energy resilience. Energy Procedia. 2015;75:2904–9.
  • Rodrigues E, Fernandes MS, Gaspar AR, Gomes Á, Costa JJ. Thermal transmittance effect on energy consumption of Mediterranean buildings with different thermal mass. Appl Energy. 2019;252:113437.
  • Wu W. Economic analysis of energy consumption based on thermoeconomic cost analysis model. Int J Heat Technol. 2019;37(2):620–4.

 

  • Wang Y, Ni Z, Chen S, Xia B. Microclimate regulation and energy saving potential from different urban green infrastructures in a subtropical city. J Clean Prod. 2019;226:913–27.
  • Sola A, Corchero C, Salom J, Sanmarti M. Multi-domain urban-scale energy modelling tools: A review. Sustain Cities Soc. 2020;54:101872.
  • Yang L, Lam JC, Tsang CL. Energy performance of building envelopes in different climate zones in China. Appl Energy. 2008;85(9):800–17.
  • Zhu P, Yan D, Sun H, An J, Huang Y. Building Blocks Energy Estimation (BBEE): A method for building energy estimation on district level. Energy Build. 2019;185:137–47.