[1]. D. Lazos, A. B. Sproul, and M. Kay, “Optimisation of energy management in commercial buildings with weather forecasting inputs: A review,” Renew. Sustain. Energy Rev., vol. 39, pp. 587–603, 2014, doi: 10.1016/j.rser.2014.07.053.
[2]. V. N. Sewdien, R. Preece, J. L. R. Torres, E. Rakhshani, and M. van der Meijden, “Assessment of critical parameters for artificial neural networks based short-term wind generation forecasting,” Renew. Energy, vol. 161, pp. 878–892, 2020, doi: 10.1016/j.renene.2020.07.117.
[3] K. Chapagain, S. Kittipiyakul, and P. Kulthanavit, “Short-term electricity demand forecasting: Impact analysis of temperature for Thailand,” Energies, vol. 13, no. 10, pp. 1–29, 2020, doi: 10.3390/en13102498.
[4]. M. M. Rahman et al., “Prospective methodologies in hybrid renewable energy systems for energy prediction using artificial neural networks,” Sustain., vol. 13, no. 4, pp. 1–28, 2021, doi: 10.3390/su13042393.
[5]. M. J. Gul, G. M. Urfa, A. Paul, J. Moon, S. Rho, and E. Hwang, “Mid-term electricity load prediction using CNN and Bi-LSTM,” J. Supercomput., vol. 77, no. 10, pp. 10942–10958, 2021, doi: 10.1007/s11227-021-03686-8.
[6]. F. C. Torrini, R. C. Souza, F. L. Cyrino Oliveira, and J. F. Moreira Pessanha, “Long term electricity consumption forecast in Brazil: A fuzzy logic approach,” Socioecon. Plann. Sci., vol. 54, pp. 18–27, 2016, doi: 10.1016/j.seps.2015.12.002.
[7]. S. Bissey, S. Jacques, and J. C. Le Bunetel, “The fuzzy logic method to efficiently optimize electricity consumption in individual housing,” Energies, vol. 10, no. 11, 2017, doi: 10.3390/en10111701.
[8]. E. A. Madrid and N. Antonio, “Short-term electricity load forecasting with machine learning,” Inf., vol. 12, no. 2, pp. 1–21, 2021, doi: 10.3390/info12020050.
[9]. L. Suganthi and A. A. Samuel, “Energy models for demand forecasting - A review,” Renew. Sustain. Energy Rev., vol. 16, no. 2, pp. 1223–1240, 2012, doi: 10.1016/j.rser.2011.08.014.
[10]. S. R. Salkuti, “Short-term electrical load forecasting using radial basis function neural networks considering weather factors,” Electr. Eng., vol. 100, no. 3, pp. 1985–1995, 2018, doi: 10.1007/s00202-018-0678-8.
[11]. S. N. Fallah, M. Ganjkhani, S. Shamshirband, and K. wing Chau, “Computational intelligence on short-term load forecasting: A methodological overview,” Energies, vol. 12, no. 3, 2019, doi: 10.3390/en12030393.
[12]. N. Elamin and M. Fukushige, “Modeling and forecasting hourly electricity demand by SARIMAX with interactions,” Energy, vol. 165, pp. 257–268, 2018, doi: 10.1016/j.energy.2018.09.157.
[13]. U. I. Akpan and A. Starkey, “Review of classification algorithms with changing inter-class distances,” Mach. Learn. with Appl., vol. 4, no. November 2020, p. 100031, 2021, doi: 10.1016/j.mlwa.2021.100031.
[14]. H. Li et al., “Classification of electricity consumption behavior based on improved k-means and lstm,” Appl. Sci., vol. 11, no. 16, pp. 1–17, 2021, doi: 10.3390/app11167625.
[15]. E. M. Burger and S. J. Moura, “Gated ensemble learning method for demand-side electricity load forecasting,” Energy Build., vol. 109, pp. 23–34, 2015, doi: 10.1016/j.enbuild.2015.10.019.
[16]. Y. T. Chae, R. Horesh, Y. Hwang, and Y. M. Lee, “Artificial neural network model for forecasting sub-hourly electricity usage in commercial buildings,” Energy Build., vol. 111, pp. 184–194, 2016, doi: 10.1016/j.enbuild.2015.11.045.
[17]. I. Shah, H. Iftikhar, and S. Ali, “Modeling and Forecasting Medium-Term Electricity Consumption Using Component Estimation Technique,” Forecasting, vol. 2, no. 2, pp. 163–179, 2020, doi: 10.3390/forecast2020009.
[18]. P. Pełka and G. Dudek, “Pattern-Based Forecasting Monthly Electricity Demand Using Multilayer Perceptron,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 11508 LNAI, pp. 663–672, 2019, doi: 10.1007/978-3-030-20912-4_60.
[19]. S. Yu, K. Wang, and Y. M. Wei, “A hybrid self-adaptive Particle Swarm Optimization-Genetic Algorithm-Radial Basis Function model for annual electricity demand prediction,” Energy Convers. Manag., vol. 91, pp. 176–185, 2015, doi: 10.1016/j.enconman.2014.11.059.
[20]. "Statistics and information network of Ministry of Energy." https://isn.moe.gov.ir/Accessed: 2023-02-0.
[21]. "guilan regional electric company."https://gilrec.co.ir/ Accessed: 2023-02-01.
[22]. " National Meteorological Organization" https://www.irimo.ir/Accessed: 2023-02-01
[23]. "Sunrise and sunset times in RashtGilan Province", Iran https://sunrise-sunset.org/Accessed: 2022-02-17.
[24]. Maulud D, Abdulazeez AM. A Review on Linear Regression Comprehensive in Machine Learning. JASTT [Internet]. 2020Dec.31 [cited 2022Nov.3];1(4):140-7. Available from: https://jastt.org/index.php/jasttpath/article/view/57.
[25]. J. Moon, S. Park, S. Rho, and E. Hwang, “A comparative analysis of artificial neural network architectures for building energy consumption forecasting,” Int. J. Distrib. Sens. Networks, vol. 15, no. 9, 2019, doi: 10.1177/1550147719877616.
[26]. R. K. Yadav and Anubhav, “PSO-GA based hybrid with Adam Optimization for ANN training with application in Medical Diagnosis,” Cogn. Syst. Res., vol. 64, pp. 191–199, 2020, doi: 10.1016/j.cogsys.2020.08.011.
[27]. K. Mohammadi, S. Shamshirband, M. H. Anisi, K. Amjad Alam, and D. Petković, “Support vector regression based prediction of global solar radiation on a horizontal surface,” Energy Convers. Manag., vol. 91, pp. 433–441, 2015, doi: 10.1016/j.enconman.2014.12.015.
[28]. D. Jap, M. Stöttinger, and S. Bhasin, “Support vector regression: Exploiting machine learning techniques for leakage modeling,” ACM Int. Conf. Proceeding Ser., vol. 14-June-20, 2015, doi: 10.1145/2768566.2768568.
[29]. A. Román-Portabales, M. López-Nores, and J. J. Pazos-Arias, “Systematic review of electricity demand forecast using ann-based machine learning algorithms,” Sensors, vol. 21, no. 13, pp. 1–23, 2021, doi: 10.3390/s21134544.