بهینه‌سازی مصرف انرژی ساختمان با استفاده از الگوریتم بهینه‌سازی ازدحام ذرات تک و چند هدفه و ژنتیک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی سیستمهای انرژی، دانشکدۀ علوم و فنون نوین دانشگاه تهران

2 کارشناسی ارشد مهندسی کامپیوتر، دانشکدۀ مهندسی کامپیوتر، دانشگاه آزاد اسلامی واحد لاهیجان

3 استادیار گروه مهندسی سیستمهای انرژی، دانشگاه علم و صنعت تهران

10.22059/ses.2022.90568

چکیده

از آنجا که بخش قابل توجهی از انرژی مصرفی در سراسر جهان به مصرف انرژی در ساختمان مربوط می‌شود، در حال حاضر بهینه‌سازی انرژی ساختمان با وجود محدودیت‌ها و با توجه به حفظ محیط زیست زمین بسیار حایز اهمیت است. این مقاله به محدودیت‌های مهم برای بهینه‌سازی عملکرد انرژی ساختمان با استفاده از الگوریتم بهینه‌سازی ازدحام ذرات تک و چند هدفه و الگوریتم ژنتیک با نرم‌افزار شبیه‌سازی انرژی ساختمان انرژی پلاس و  MATLABبه بررسی داده‌های آب‌و‌هوای مختلف چند شهر ایران با در نظر گرفتن مدل تک‌اتاقی و تأثیر پارامترهای معماری ساختمان از جمله جهت‌گیری ساختمان، مشخصات سایه‌بان، اندازۀ پنجره، و لعاب و مصالح دیوار اعمال و... می‌پردازد. همچنین در بخش بهینه‌سازی، تحلیل‌های الگوریتم بهینه‌سازی ازدحام ذرات تک و چند هدفه و ژنتیک مصرف برق سالانۀ سرمایش، گرمایش و روشنایی برای درک تعاملات بین توابع هدف و به حداقل رساندن کل تقاضای انرژی سالانۀ ساختمان مورد بررسی قرار گرفته که راه‌حل‌های بهینۀ به‌دست‌آمده به عنوان جبهۀ بهینۀ پارتو در نظر گرفته می‌شود. نتایج برای مدل این تحقیق، مصرف برق سرمایشی سالانه حدود 8/19 تا 3/33 درصد کاهش و گرمایش و روشنایی سالانه به‌ترتیب 7/1 تا 8/4 درصد و 5/0 تا 6/2 درصد در مقایسه با مدل‌های دیگر افزایش داده شده است که منجر به کاهش بهینۀ 6/1 تا 3/11 درصد از کل تقاضای برق سالانۀ ساختمان می‌شود. علاوه بر این، استفاده از دو روش یادشده منجر به یک سیستم انرژی، بهینه، کارآمد و افزایش بهره‌وری انرژی در مراحل اولیۀ طراحی ساختمان می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Optimization of building energy consumption using single and multi-objective particle swarm optimization and genetics algorithms

نویسندگان [English]

  • Rahim Zahedi 1
  • Zahra Moradi Pour 2
  • Abolfazl Ahmadi 3
1 PhD Candidate, Energy Systems Engineering, Faculty of New sciences and Technologies, University of Tehran, Tehran, Iran
2 MSc in Computer Engineering, Department of Computer Engineering, Islamic Azad University, Lahijan, Iran
3 Asistant Professor, Department of Energy Systems Engineering, Iran University of Science and Technology, Tehran, Iran
چکیده [English]

Since significant energy consumption worldwide is related to building energy, building energy optimization is currently very important despite the limitations and due to the preservation of the earth's environment. This paper addresses the important limitations for optimizing building energy performance using single and multi-objective particle swarm optimization (MOPSO) and genetics (NSGA-II) algorithms with EnergyPlus and MATLAB building energy simulation software to examine different weather data of several cities in Iran with considering the one-room model offers with the effect of building architectural parameters. Also in the optimization section, the annual electricity consumption of cooling, heating, and lighting to understand the interactions between the target functions and minimize the total annual energy demand of the building is examined, and the results obtained, the annual cooling electricity consumption is reduced by 19.8-33.3% and the annual heating and lighting Respectively increased by 1.7-4.8% and 0.5-2.6% compared to other models, which leads to an optimal reduction of 1.6-11.3% of the total annual electricity demand of the building.

کلیدواژه‌ها [English]

  • Building Energy
  • Genetic Algorithm (NSGA-II)
  • Optimal
  • Single
  • Multipurpose Particle Swarm Optimization Algorithm (MOPSO)
  • Ferrara M, Fabrizio E, Virgone J, Filippi M. A simulation-based optimization method for cost-optimal analysis of nearly Zero Energy Buildings. Energy and Buildings. 2014;84:442-57.
  • CHANGE OC. Intergovernmental panel on climate change. World Meteorological Organization. 2007;52.
  • Al-Homoud MS. Optimum thermal design of air-conditioned residential buildings. Building and Environment. 1997;32(3):203-10.
  • Pisello AL, Goretti M, Cotana F. A method for assessing buildings’ energy efficiency by dynamic simulation and experimental activity. Applied Energy. 2012;97:419-29.
  • Bandara R, Attalage R, editors. Optimization methodologies for building performance modelling and optimization. 18th ERU symposium, Sri Lanka; 2012.
  • Zhang Y, Korolija I, editors. Performing complex parametric simulations with jEPlus. SET2010-9th International Conference on Sustainable Energy Technologies; 2010.
  • Nguyen A-T, Reiter S, Rigo P. A review on simulation-based optimization methods applied to building performance analysis. Applied energy. 2014;113:1043-58.
  • Ghodrati A, Zahedi R, Ahmadi A. Analysis of cold thermal energy storage using phase change materials in freezers. Journal of Energy Storage. 2022;51:104433.
  • Chantrelle FP, Lahmidi H, Keilholz W, El Mankibi M, Michel P. Development of a multicriteria tool for optimizing the renovation of buildings. Applied Energy. 2011;88(4):1386-94.
  • Tuhus-Dubrow D, Krarti M. Genetic-algorithm based approach to optimize building envelope design for residential buildings. Building and environment. 2010;45(7):1574-81.
  • Saporito A, Day A, Karayiannis T, Parand F. Multi-parameter building thermal analysis using the lattice method for global optimisation. Energy and buildings. 2001;33(3):267-74.
  • Gossard D, Lartigue B, Thellier F. Multi-objective optimization of a building envelope for thermal performance using genetic algorithms and artificial neural network. Energy and Buildings. 2013;67:253-60.
  • Yu W, Li B, Jia H, Zhang M, Wang D. Application of multi-objective genetic algorithm to optimize energy efficiency and thermal comfort in building design. Energy and Buildings. 2015;88:135-43.
  • Kim D-W, Park C-S, editors. Manual vs. optimal control of exterior and interior blind systems. Proceedings 11th International IBPSA Conference; 2009.
  • Ascione F, Bianco N, De Masi RF, Mauro GM, Vanoli GP. Design of the building envelope: A novel multi-objective approach for the optimization of energy performance and thermal comfort. Sustainability. 2015;7(8):10809-36.
  • Ascione F, Bianco N, De Stasio C, Mauro GM, Vanoli GP. A new methodology for cost-optimal analysis by means of the multi-objective optimization of building energy performance. Energy and Buildings. 2015;88:78-90.
  • Yong Z, Li-Juan Y, Qian Z, Xiao-Yan S. Multi-objective optimization of building energy performance using a particle swarm optimizer with less control parameters. Journal of Building Engineering. 2020;32:101505.
  • Zhang Y, Yuan L-j, Cheng S, editors. Building energy performance optimization: a new multi-objective particle swarm method. International Conference on Swarm Intelligence; 2019: Springer.
  • Sanaye S, Dehghandokht M. Modeling and multi-objective optimization of parallel flow condenser using evolutionary algorithm. Applied Energy. 2011;88(5):1568-77.
  • Ryu J-h, Kim S, Wan H, editors. Pareto front approximation with adaptive weighted sum method in multiobjective simulation optimization. Proceedings of the 2009 Winter Simulation Conference (WSC); 2009: IEEE.
  • Marler RT, Arora JS. Survey of multi-objective optimization methods for engineering. Structural and multidisciplinary optimization. 2004;26(6):369-95.
  • Stoppato A, Cavazzini G, Ardizzon G, Rossetti A. A PSO (particle swarm optimization)-based model for the optimal management of a small PV (Photovoltaic)-pump hydro energy storage in a rural dry area. Energy. 2014;76:168-74.
  • Reyes-Sierra M, Coello CC. Multi-objective particle swarm optimizers: A survey of the state-of-the-art. International journal of computational intelligence research. 2006;2(3):287-308.
  • Eberhart RC, Shi Y, editors. Tracking and optimizing dynamic systems with particle swarms. Proceedings of the 2001 congress on evolutionary computation (IEEE Cat No 01TH8546); 2001: IEEE.
  • Chaudhary DK, Dua RL. Application of multi objective particle swarm optimization to maximize coverage and lifetime of wireless sensor network. Int J Comput Eng Res. 2012;2:1628-33.
  • Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation. 2002;6(2):182-97.
  • Djedjig R, Bozonnet E, Belarbi R. Analysis of thermal effects of vegetated envelopes: Integration of a validated model in a building energy simulation program. Energy and buildings. 2015;86:93-103.

 

  • Delgarm N, Sajadi B, Kowsary F, Delgarm S. Multi-objective optimization of the building energy performance: A simulation-based approach by means of particle swarm optimization (PSO). Applied energy. 2016;170:293-303.
  • Calafiore G, Tommolillo C, Novara C, Fabrizio E, editors. APSEplus: A MATLAB toolbox for parametric energy simulation of reference buildings. Proceedings of the 6th International Conference on Software and Computer Applications; 2017.
  • Dornelles K, Roriz V, Roriz M, editors. Determination of the solar absorptance of opaque surfaces. 24th International Conference on Passive and Low Energy Architecture; 2007.