بهره ‏برداری بهینۀ پارکینگ هوشمند خودروهای الکتریکی مجهز به منابع انرژی تجدیدپذیر تحت عدم قطعیت‏های مختلف

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری تخصصی مهندسی برق قدرت، دانشگاه تبریز، دانشکدۀ مهندسی برق و کامپیوتر

2 استاد مهندسی برق قدرت، دانشگاه تبریز، دانشکدۀ مهندسی برق و کامپیوتر

چکیده

با حضور گستردۀ خودروهای الکتریکی در جوامع امروزی لازم است مدیریت هوشمند خودروهای الکتریکی مورد بررسی قرار بگیرد. از طرفی، ادغام منابع انرژی تجدیدپذیر در پارکینگ خودروهای هوشمند سبب کاهش وابستگی به شبکۀ بالادستی و کاهش هزینه‏های بهره‏برداری می‏شود. در همین زمینه، در ‏مقالۀ پیش رو بهره‏برداری بهینۀ پارکینگ هوشمند خودروهای الکتریکی مجهز به منابع انرژی تجدیدپذیر مورد بررسی و بحث قرار گرفته است. همچنین، به منظور مدل‏سازی عدم قطعیت منابع انرژی تجدیدپذیر، قیمت برق شبکۀ بالادستی و رفتار صاحبان خودروهای الکتریکی از روش برنامه‏ریزی تصادفی استفاده شده است. منظور از عدم قطعیت رفتار صاحبان خودروهای الکتریکی شامل زمان ورود خودرو به پارکینگ، زمان خروج از پارکینگ و انرژی اولیۀ آن‏ها هنگام ورود به پارکینگ هستند که به صورت پارامتر دارای عدم قطعیت در نظر گرفته شده‏اند. مسئلۀ بهینه‏سازی یادشده به صورت یک مدل برنامه‏نویسی آمیخته با اعداد صحیح (MILP1) ارائه شده و توسط حل‏کنندۀ CPLEX در نرم‏افزار GAMS حل شده است. نتایج شبیه‏سازی نشان می‏دهد بهره‏بردار پارکینگ هوشمند با شارژ و دشارژ هوشمند خودروهای الکتریکی می‏تواند سود کسب کند. همچنین، در حضور سناریو‏ها و عدم قطعیت‏های مختلف، استراتژی عملکرد پارکینگ هوشمند متفاوت است، به طوری که بیشترین و کمترین سود کسب‏شده برابر با 84/1740 و 22/1359 دلار حاصل شد، ولی با در نظر گرفتن احتمال تمام سناریوها سود مورد انتظار برابر با 31/1571 دلار حاصل شد. در نتیجۀ عدم قطعیت‏های مختلف، سود حاصل از پارکینگ هوشمند را تحت تأثیر قرار می‏دهند.

کلیدواژه‌ها


عنوان مقاله [English]

Optimal Operation of Smart Electric Vehicle Parking Lots Equipped with Renewable Energy Sources under Various Uncertainties

نویسندگان [English]

  • Amir Mirzapour-Kamanaj 1
  • Masoud Agabalaye-Rahvar 1
  • Amir Talebi 1
  • Kazem Zare 2
  • Behnam Mohammadi-Ivatloo 2
1 PhD Student in Power Electrical Engineering, University of Tabriz, Faculty of Electrical and Computer Engineering
2 Professor of Power Electrical Engineering, University of Tabriz, Faculty of Electrical and Computer Engineering
چکیده [English]

Introduction
By the extensive presence of electric vehicles (EVs) in today’s communities, the smart management of EVs should be completely investigated. On the other hand, the integration of renewable energy sources (RESs) in the smart electric vehicles parking lot (SEVsPL) reduces the dependency on the upstream network and also the whole operation costs. So, under finite energy sources around the world, in order to supply various demands along with generating low greenhouse gas emissions (GHGEs), policymakers and different scholars seek to find cost-effective, eco-friendly, efficient, and sustainable solutions. With investigating the literature review in the field of management and optimal operation of SEVsPL can be obviously concluded that multiple approaches and strategies from different perspectives were used to improve the efficient usage of energy based on smart grids (SGs) framework in SEVsPL. It was indicated that none of the analyzed references, addressee the simultaneous effects of different uncertainties, i.e., the random behavior of EVs owners, RES, and the upstream network electricity price on the charging and discharging processes for the operation of SEVsPL. Certainly, applying the nature of such uncertainty sources in an appropriate path will have significant impacts on the bringing results as close as possible to the real-world solutions.
Model description and method of solution
Therefore, in the current paper, a stochastic scheduling methodology for the optimal operation of SEVsPL has been proposed as an interactive user interface between the respective operator and EVs owners to facilitate charging and discharging activities and operation costs. The total capacity of SEVsPL is 50 in which three various EVs’ models with 10 scenarios for the arrival time, departure time, and initial state of energy (SoE) were considered. Furthermore, the other uncertainties oriented from RES and the upstream network electricity price have also taken into account with relative 10 scenarios. It is worth to mention that Mont Carlo simulation (MCS) implemented in MATLAB software to produce 1000 scenarios and then reduce them to 10 scenarios with the assistance of SCENRED algorithm in GAMS software. This stochastic optimization model of SEVsPL was formulated as mixed integer linear programming (MILP) problem, which was solved by CPLEX solver in GAMS software.
Simulation results and discussion
According to the obtained results in different scenarios, it was obviously seen that the lowest profit of SEVsPL was occurred in scenario 8, which can be considered as the worst case scenario, although, the highest profit has been achieved in scenario 9 and can be taken as the best case scenario. So, it can be mentioned that the optimal utilization of SEVsPL in the presence of RES uncertainty and the unpredictable behavior of EVs can be different. By considering the probabilities of the aforementioned uncertainties, the expected profit for SEVsPL was $ 1571.31. For the plotted figures of photovoltaic (PV) and wind turbine (WT) power plants in scenario 9, the generated WT power can be sold to the upstream network within the period in which EVs have not yet entered the SEVsPL and also for the PV generated power can be utilized to charge EVs. To realize the aim of the SEVsPL operator in maximizing his/her profit, the smart operating strategy was accomplished in purchased /sold power from /to the upstream network, which were indicated in relative figures for two worst case and best case scenarios. These outcomings highlighted that sold power has happened when electricity price is high (e.g., 10 o'clock in scenario 8 and 17 o'clock in scenario 9); however, the purchased power has taken place when electricity price is low (e.g., 10 o'clock in Scenario 9 and 12 o'clock in Scenario 8). This strategy is true for all EVs in all scenarios such that results to gain profit from electricity price arbitrage by the SEVsPL operator. If the EVs owners are looking for the maximum charge when leaving the SEVsPL, the respective operator will earn less profit according to different gamma coefficients presented in relevant expected SEVsPL profit’s figure. In other words, the chance of discharging EVs will be less when attending SEVsPL.
Conclusions
The proposed stochastic optimal operation strategy of SEVsPL in this paper has been accomplished to flatten charging and discharging processes along with operation costs. In the presence of different considered uncertainties, the optimal operation strategy of SEVsPL can be diverse for different scenarios such that the highest and lowest profits were equal to $1740.84 and $1359.22, respectively. Although by considering the probability of all scenarios, the expected profit was equal to $ 1571.31. These various uncertainties affect the obtained profit of SEVsPL which the respective operator seeks to charge EVs at low price hours and discharge EVs at high price hours under the smart performance strategy.
 
 

کلیدواژه‌ها [English]

  • Stochastic programming
  • smart electric vehicle parking lots
  • uncertainty
  • renewable energy sources
[1].          Remani T, Jasmin E, Ahamed TI. Residential load scheduling with renewable generation in the smart grid: A reinforcement learning approach. IEEE Systems Journal. 2018;13(3):3283-94.
[2].          Luz T, Moura P, de Almeida A. Multi-objective power generation expansion planning with high penetration of renewables. Renewable Sustainable Energy Reviews. 2018;81:2637-43.
[3].          García Vera YE, Dufo-López R, Bernal-Agustín JL. Energy management in microgrids with renewable energy sources: A literature review. Applied Sciences. 2019;9(18):3854.
[4].          Şengör İ, Erenoğlu AK, Erdinç O, Taşcıkaraoğlu A, Catalão JP, editors. Optimal Coordination of EV Charging through Aggregators under Peak Load Limitation Based DR Considering Stochasticity. 2018 International Conference on Smart Energy Systems and Technologies (SEST); 2018: Ieee.
[5].          IEA C. Global EV outlook 2020.. URL: https://www iea org/reports/global-ev-outlook-2020. 2020 Jun 15.
[6].          Mohan V, Singh JG, Ongsakul W. Sortino ratio based portfolio optimization considering EVs and renewable energy in microgrid power market. IEEE Transactions on Sustainable Energy. 2016;8(1):219-29.
 
[7].          Shafie-Khah M, Heydarian-Forushani E, Osório GJ, Gil FA, Aghaei J, Barani M, et al. Optimal behavior of electric vehicle parking lots as demand response aggregation agents. IEEE Transactions on Smart Grid. 2015;7(6):2654-65.
[8].          Neyestani N, Damavandi MY, Shafie-Khah M, Contreras J, Catalão JP. Allocation of plug-in vehicles' parking lots in distribution systems considering network-constrained objectives. IEEE Transactions on Power Systems. 2014;30(5):2643-56.
[9].          Fallah-Mehrjardi O, Yaghmaee MH, Leon-Garcia A. Charge scheduling of electric vehicles in smart parking-lot under future demands uncertainty. IEEE Transactions on Smart Grid. 2020;11(6):4949-59.
[10].        Jiang W, Zhen Y. A real-time EV charging scheduling for parking lots with PV system and energy store system. IEEE Access. 2019;7:86184-93.
[11].        Jordehi AR, Javadi MS, Catalão JP. Day-ahead scheduling of energy hubs with parking lots for electric vehicles considering uncertainties. Energy. 2021;229:120709.
[12].        Mansour‐Satloo A, Agabalaye-Rahvar M, Mirazaei MA, Mohammadi-Ivatloo B, Zare K, Anvari-Moghaddam A. A hybrid robust-stochastic approach for optimal scheduling of interconnected hydrogen-based energy hubs. IET Smart Grid. 2021;4(2):241-54.
[13].        Mansour-Saatloo A, Agabalaye-Rahvar M, Mirzaei MA, Mohammadi-Ivatloo B, Zare K. Economic analysis of energy storage systems in multicarrier microgrids. Energy Storage in Energy Markets: Elsevier; 2021. p. 173-90.
[14].        Mirzaei MJ, Kazemi A. A two-step approach to optimal management of electric vehicle
parking lots. Sustainable Energy Technologies Assessments. 2021;46:101258.
[15].        Zhang L, Li Y. Optimal management for parking-lot electric vehicle charging by two-stage approximate dynamic programming. IEEE Transactions on Smart Grid. 2015;8(4):1722-30.
[16].        Jannati J, Nazarpour D. Optimal performance of electric vehicles parking lot considering environmental issue. Journal of cleaner production. 2019;206:1073-88.
[17].        Ahmadi-Nezamabad H, Zand M, Alizadeh A, Vosoogh M, Nojavan S. Multi-objective optimization based robust scheduling of electric vehicles aggregator. Sustainable Cities Society. 2019;47:101494.
[18].        Sedighizadeh M, Fazlhashemi SS, Javadi H, Taghvaei M. Multi-objective day-ahead energy management of a microgrid considering responsive loads and uncertainty of the electric vehicles. Journal of Cleaner Production. 2020;267:121562.
[19].        Farsangi AS, Hadayeghparast S, Mehdinejad M, Shayanfar H. A novel stochastic energy management of a microgrid with various types of distributed energy resources in presence of demand response programs. Energy. 2018;160:257-74.
[20].        Aliasghari P, Mohammadi-Ivatloo B, Abapour M. Risk-based scheduling strategy for electric vehicle aggregator using hybrid Stochastic/IGDT approach. Journal of Cleaner Production. 2020;248:119270.
[21].        Yaprakdal F, Baysal M, Anvari-Moghaddam A. Optimal operational scheduling of reconfigurable microgrids in presence of renewable energy sources. Energies. 2019;12(10):1858.