بررسی تأثیر به‌کارگیری نماهای سبز عمودی بر بهره‌وری انرژی و ردپای کربن در ساختمان‌های اداری: مطالعه‌ای بر مناطق اقلیمی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه معماری، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران

2 گروه باغبانی، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران

چکیده

گرمایش جهانی و تغییرات اقلیمی یکی از چالش‌های بزرگ زیست‌محیطی قرن حاضر است. ایران با انتشار سالانه 996,753 ‌مگاتن معادل کربن، سهم قابل‌ توجهی در انتشار گازهای گلخانه‌ای جهان دارد. در این‌میان، بخش ساختمان یکی از عوامل اصلی انتشار گازهای گلخانه‌ای در ایران است که حدود 40 درصد از کل مصرف انرژی کشور را به خود اختصاص می‌دهد. این پژوهش با هدف ارزیابی تأثیر نمای سبز عمودی بر مصرف انرژی و انتشار کربن در ساختمان‌های اداری در پنج اقلیم متفاوت ایران انجام ‌شده است. با استفاده از نرم‌افزارهای دیزاین بیلدر و سیما پرو، سه نوع نما شامل نمای متعارف (بدون پوشش گیاهی)، نمای سبز مستقیم و نمای سبز غیرمستقیم شبیه‌سازی و مقایسه شد. داده‌های حاصل با آزمون‌های آماری آنووا و توکی در پایتون تحلیل شد. نتایج نشان داد اثربخشی نماهای سبز به‌شدت به اقلیم وابسته است. بهترین عملکرد در میان تمام اقلیم‌ها به نمای سبز مستقیم در اقلیم گرم و مرطوب با کاهش 17/5 درصد مصرف انرژی و 6 درصد در انتشار کربن و نمای سبز غیرمستقیم در اقلیم سرد با کاهش 29/7 درصد در مصرف انرژی مربوط بود. در اقلیم نیمه‌خشک، تنها نمای سبز مستقیم عملکرد مثبتی با کاهش 69/1 درصد مصرف انرژی نشان داد، در حالی که در اقلیم معتدل و مرطوب، هر دو نوع نمای سبز اثر معکوس داشتند و موجب افزایش 43/2 ـ 28/2 درصد مصرف انرژی و 26/11 ـ 21/12 درصد انتشار کربن شدند. آزمون‌های آماری در تمام اقلیم‌ها تفاوت معنا‌داری (P<0.05) با اندازۀ اثر بزرگ (η²=0.49-0.81) بین انواع نماها نشان داد. همچنین، آزمون آنووا دوطرفه تأیید کرد که اثر متقابل اقلیم و نوع نما بر مصرف انرژی (P=0.0032) و انتشار کربن (P=0.0028) معنا‌دار است. یافته‌های این پژوهش می‌تواند برای توسعۀ راهبردهای اقلیم‌محور نماهای سبز ساختمان‌ها مورد استفاده قرار گیرد و گامی مؤثر در راستای توسعۀ پایدار و مقابله با تغییرات اقلیمی باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Impact of Vertical Green Facades on Energy Efficiency and Carbon Footprint in Office Buildings: A Study of Climatic Regions in Iran

نویسندگان [English]

  • Leila Jafari 1
  • Seyedeh Mamak Salavatian 1
  • Marzieh Kazemzadeh 1
  • Davood Hashemabadi 2
1 Department of Architecture, Ra.C., Islamic Azad University, Rasht, Iran
2 Department of Horticulture, Ra.C., Islamic Azad University, Rasht, Iran
چکیده [English]

Global warming and climate change pose urgent environmental challenges of the 21st century. Iran emits roughly 996,753 megatons of CO₂ equivalent annually, which represents a significant share of global greenhouse gas emissions. The building sector drives approximately 40% of the nation's total energy consumption. This study evaluates how vertical green facades (VGFs) affect energy consumption and carbon emissions in office buildings across five distinct climatic zones in Iran. Using DesignBuilder and SimaPro software, we modeled and compared three façade types: conventional (non-vegetated), direct green facade, and indirect green facade. We analyzed the data statistically using ANOVA and Tukey's tests in Python. Results showed that green facades perform differently depending on climate. The direct green facade in the hot-humid region achieved a 5.17% reduction in energy use and a 6% decrease in carbon emissions. Meanwhile, the indirect green facade in the cold climate yielded a 7.29% reduction in energy consumption. In the semi-arid climate, only the direct green facade demonstrated a positive impact, with a 1.69% energy reduction. However, in the temperate-humid climate, both green facade types resulted in increased energy use (2.28–2.43%) and carbon emissions (11.26–12.21%). Statistical analysis confirmed significant differences (P < 0.05) among façade types across all climates, with large effect sizes (η² = 0.49–0.81). Two-way ANOVA revealed a statistically significant interaction between climate type and façade type on energy use (P = 0.0032) and carbon emissions (P = 0.0028). These results provide evidence-based insights for climate-responsive green facade strategies, which could contribute to sustainable development and climate change mitigation efforts in Iran.

کلیدواژه‌ها [English]

  • Energy efficiency
  • Global Warming Potential (GWP)
  • Carbon footprint
  • Office buildings
  • Vertical green façades
[1]        M. S. Fernandes, B. Coutinho, and E. Rodrigues, “The impact of climate change on an office building in Portugal: Measures for a higher energy performance,” J. Clean. Prod., vol. 445, p. 141255, Mar. 2024, doi: 10.1016/j.jclepro.2024.141255.
[2]        H. Zhang, J. Cai, and J. E. Braun, “A whole building life-cycle assessment methodology and its application for carbon footprint analysis of U.S. commercial buildings,” J. Build. Perform. Simul., vol. 16, no. 1, pp. 38–56, Jan. 2023, doi: 10.1080/19401493.2022.2107071.
[3]        M. S. Hossain, O. Therasme, P. Crovella, and T. A. Volk, “Assessing the Environmental Impact of Biobased Exterior Insulation Panel: A Focus on Carbon Uptake and Embodied Emissions,” Energies, vol. 17, no. 14, p. 3406, July 2024, doi: 10.3390/en17143406.
[4]        P. Talhinhas, J. C. Ferreira, V. Ferreira, A. L. Soares, D. Espírito-Santo, and T. A. D. Paço, “In the Search for Sustainable Vertical Green Systems: An Innovative Low-Cost Indirect Green Façade Structure Using Portuguese Native Ivies and Cork,” Sustainability, vol. 15, no. 6, p. 5446, Mar. 2023, doi: 10.3390/su15065446.
[5]        M. Radić, M. Brković Dodig, and T. Auer, “Green Facades and Living Walls—A Review Establishing the Classification of Construction Types and Mapping the Benefits,” Sustainability, vol. 11, no. 17, p. 4579, Aug. 2019, doi: 10.3390/su11174579.
[6]        M. Manouchehri, J. Santiago López, and M. Valiente López, “Sustainable Design of Vertical Greenery Systems: A Comprehensive Framework,” Sustainability, vol. 16, no. 8, p. 3249, Apr. 2024, doi: 10.3390/su16083249.
[7]        S. Arghavani, H. Malakooti, and A.-A. Ali Akbari Bidokhti, “Numerical assessment of the urban green space scenarios on urban heat island and thermal comfort level in Tehran Metropolis,” J. Clean. Prod., vol. 261, p. 121183, July 2020, doi: 10.1016/j.jclepro.2020.121183.
[8]        M. farhadian, S. Razzaghi Asl, and H. Ghamari, “Thermal Performance Simulation of Hydroponic Green Wall in a Cold Climate,” Int. J. Archit. Eng. Urban Plan., vol. 29, no. 2, Dec. 2019, doi: 10.22068/ijaup.29.2.233.
[9]        P. Keyvan and R. Roshandel, “An integrated Energy-Yield-Cost model to evaluate clean energy solutions for vertical farms,” Comput. Electron. Agric., vol. 219, p. 108809, Apr. 2024, doi: 10.1016/j.compag.2024.108809.
[10]      H. Zer, A. Z. Ben‐Ami, and N. Keren, “Static and dynamic acclimation mechanisms to extreme light intensities in Hedera helix (Ivy) plants,” Physiol. Plant., vol. 177, no. 2, p. e70217, Mar. 2025, doi: 10.1111/ppl.70217.
[11]      L. Kucharski, M. Kloss, J. Sienkiewicz, M. Liszewska, and P. Kiełtyk, “Impact of climate change on ivy ( Hedera helix L.) expansion in forests of Central Poland,” Folia For. Pol., vol. 61, no. 3, pp. 211–221, Sept. 2019, doi: 10.2478/ffp-2019-0020.
[12]      G. Oloś, “Green facades support biodiversity in urban environment – A case study from Poland,” J. Water Land Dev., pp. 257–266, Jan. 2024, doi: 10.24425/jwld.2023.148450.
[13]      G. Pérez, J. Coma, M. Chàfer, and L. F. Cabeza, “Seasonal influence of leaf area index (LAI) on the energy performance of a green facade,” Build. Environ., vol. 207, p. 108497, Jan. 2022, doi: 10.1016/j.buildenv.2021.108497.
[14]      U. K. Priya and R. Senthil, “Framework for Enhancing Urban Living Through Sustainable Plant Selection in Residential Green Spaces,” Urban Sci., vol. 8, no. 4, p. 235, Dec. 2024, doi: 10.3390/urbansci8040235.
[15]      W. G. Báez-García, E. Simá, M. A. Chagolla-Aranda, L. Carlos Sandoval Herazo, and L. G. Carreto-Hernandez, “Numerical-experimental study of the thermal behavior of a green facade in a warm climate in Mexico,” Energy Build., vol. 311, p. 114156, May 2024, doi: 10.1016/j.enbuild.2024.114156.
[16]      R. Widiastuti, J. Zaini, and W. Caesarendra, “Field measurement on the model of green facade systems and its effect to building indoor thermal comfort,” Measurement, vol. 166, p. 108212, Dec. 2020, doi: 10.1016/j.measurement.2020.108212.
[17]      J. Coma, G. Pérez, A. De Gracia, S. Burés, M. Urrestarazu, and L. F. Cabeza, “Vertical greenery systems for energy savings in buildings: A comparative study between green walls and green facades,” Build. Environ., vol. 111, pp. 228–237, Jan. 2017, doi: 10.1016/j.buildenv.2016.11.014.
[18]      L. L. H. Peng, Z. Jiang, X. Yang, Q. Wang, Y. He, and S. S. Chen, “Energy savings of block-scale facade greening for different urban forms,” Appl. Energy, vol. 279, p. 115844, Dec. 2020, doi: 10.1016/j.apenergy.2020.115844.
[19]      A. Jurizat, U. Surahman, and G. K. Tedjawinata, “Operational Energy Analysis of an Educational Building Design; A Case Study of Center of Excellent (CoE) Building at Universitas Pendidikan Indonesia (UPI),” IOP Conf. Ser. Earth Environ. Sci., vol. 738, no. 1, p. 012018, Apr. 2021, doi: 10.1088/1755-1315/738/1/012018.
[20]      S. A. Zolfaghari, M. Saadatinasab, and E. Norouzi Jajarm, “Investigating the Effect of Using Green Double-Skin Facades on Energy Consumption of High-Rise Buildings in Tehran's Climatic Conditions,” Journal of Modeling in Engineering, vol. 17, no. 56, 2019. in Persian
[21]      M. Sharbafian, M. Yeganeh, and M. Baradaran Motie, “Evaluation of Shading of Green Facades on Visual Comfort and Thermal load of the Buildings,” Energy Build., vol. 317, p. 114303, Aug. 2024, doi: 10.1016/j.enbuild.2024.114303.
[22]      F. Convertino, G. Vox, and E. Schettini, “Evaluation of the cooling effect provided by a green façade as nature-based system for buildings,” Build. Environ., vol. 203, p. 108099, Oct. 2021, doi: 10.1016/j.buildenv.2021.108099.
[23]      R. Bakhshoodeh, C. Ocampo, and C. Oldham, “Thermal performance of green façades: Review and analysis of published data,” Renew. Sustain. Energy Rev., vol. 155, p. 111744, Mar. 2022, doi: 10.1016/j.rser.2021.111744.
[24]      C. C. Okorieimoh, B. Norton, and M. Conlon, “Disaggregating Longer-Term Trends from Seasonal Variations in Measured PV System Performance,” Electricity, vol. 5, no. 1, pp. 1–23, Jan. 2024, doi: 10.3390/electricity5010001.
[25]      L. Hadba, M. Bitonto, M. Oliveira, P. Mendonça, A. Zanelli, and L. Silva, “A Nature-Inspired Green–Blue Solution: Incorporating a Fog Harvesting Technique into Urban Green Wall Design,” Sustainability, vol. 16, no. 2, p. 792, Jan. 2024, doi: 10.3390/su16020792.
[26]      T. D. De Oliveira Santos, F. A. L. Pacheco, and L. F. S. Fernandes, “A systematic analysis on the efficiency and sustainability of green facades and roofs,” Sci. Total Environ., vol. 932, p. 173107, July 2024, doi: 10.1016/j.scitotenv.2024.173107.
[27]      British Standards Institution, “BS EN 15978:2011 Sustainability of construction works. Assessment of environmental performance of buildings. Calculation method,” BSI Standards Limited, 2011.
[28]      K. Kanafani, J. Magnes, S. M. Lindhard, and M. Balouktsi, “Carbon Emissions during the Building Construction Phase: A Comprehensive Case Study of Construction Sites in Denmark,” Sustainability, vol. 15, no. 14, p. 10992, July 2023, doi: 10.3390/su151410992.
[29]      European Commission, Joint Research Centre (JRC), “GHG emissions data for Iran - EDGAR 2024.” 2024. [Online]. Available: https://edgar.jrc.ec.europa.eu/report_2024
[30]      W. Liu, X. Zhang, Q. Feng, B. A. Engel, and Z. Li, “Substrate moisture variations of extensive green roofs with different structural configurations in a semi-arid region: Observational data and dynamic simulation,” J. Hydrol., vol. 626, p. 130133, Nov. 2023, doi: 10.1016/j.jhydrol.2023.130133.
[31]      M. R. Seyedabadi, U. Eicker, and S. Karimi, “Plant selection for green roofs and their impact on carbon sequestration and the building carbon footprint,” Environ. Chall., vol. 4, p. 100119, Aug. 2021, doi: 10.1016/j.envc.2021.100119.
[32]      R. Hay and C. P. Ostertag, “Life cycle assessment (LCA) of double-skin façade (DSF) system with fiber-reinforced concrete for sustainable and energy-efficient buildings in the tropics,” Build. Environ., vol. 142, pp. 327–341, Sept. 2018, doi: 10.1016/j.buildenv.2018.06.024.
[33]      W. Knifka, R. Karutz, and H. Zozmann, “Barriers and Solutions to Green Facade Implementation—A Review of Literature and a Case Study of Leipzig, Germany,” Buildings, vol. 13, no. 7, p. 1621, June 2023, doi: 10.3390/buildings13071621.
[34]      H. Mi, S. Wang, T. Wang, and T. Li, “The Influence of Vertical Greening Systems on Building Energy Consumption and Comprehensive Carbon Emission,” Buildings, vol. 15, no. 3, p. 471, Feb. 2025, doi: 10.3390/buildings15030471.
[35]      H. B. Kobya and F. Canan, “Examination of vertical green facades and green roofs in terms of ecological criteria and evaluation of energy efficiency,” Gümüşhane Üniversitesi Fen Bilim. Enstitüsü Derg., July 2021, doi: 10.17714/gumusfenbil.929266.
[36]      A. Hassoun, C. Traboulsi, M. Rabea, and M. Felix, “Suitable Density of Vertical Greenery Systems on Office Buildings for Energy Saving,” Green Build. Constr. Econ., pp. 138–149, June 2023, doi: 10.37256/gbce.4120232235.
[37]      F. Bagheri Moghaddam, J. M. Fort Mir, A. Besné Yanguas, I. Navarro Delgado, and E. Redondo Dominguez, “Building Orientation in Green Facade Performance and Its Positive Effects on Urban Landscape Case Study: An Urban Block in Barcelona,” Sustainability, vol. 12, no. 21, p. 9273, Nov. 2020, doi: 10.3390/su12219273.
[38]      U.S. Department of Energy, “Energy Plus Weather Data.” 2025. [Online]. Available: https://energyplus.net/weather
[39]      Ministry of Roads and Urban Development of the Islamic Republic of Iran, Iran National Building Regulations: Volume 19, Energy Conservation. Office of National Building Regulations, 2011. in Persian
[40]      F. Thomsit-Ireland, E. A. Essah, P. Hadley, and T. Blanuša, “The impact of green facades and vegetative cover on the temperature and relative humidity within model buildings,” Build. Environ., vol. 181, p. 107009, Aug. 2020, doi: 10.1016/j.buildenv.2020.107009.
[41]      F. Dehghan and C. Porras Amores, “Simulation-Based Multi-Objective Optimization for Building Retrofits in Iran: Addressing Energy Consumption, Emissions, Comfort, and Indoor Air Quality Considering Climate Change,” Sustainability, vol. 17, no. 5, p. 2056, Feb. 2025, doi: 10.3390/su17052056.
[42]      S. S. Nagdeve, S. Manchanda, and A. Dewan, “Thermal performance of indirect green façade in composite climate of India,” Build. Environ., vol. 230, p. 109998, Feb. 2023, doi: 10.1016/j.buildenv.2023.109998.
[43]      S. Pragati, R. Shanthi Priya, C. Pradeepa, and R. Senthil, “Simulation of the Energy Performance of a Building with Green Roofs and Green Walls in a Tropical Climate,” Sustainability, vol. 15, no. 3, p. 2006, Jan. 2023, doi: 10.3390/su15032006.
[44]      M. Ghafouri-Azar and S.-I. Lee, “Meteorological Influences on Reference Evapotranspiration in Different Geographical Regions,” Water, vol. 15, no. 3, p. 454, Jan. 2023, doi: 10.3390/w15030454.
[45]      I. Blanco, F. Convertino, E. Schettini, and G. Vox, “Energy analysis of a green façade in summer: an experimental test in Mediterranean climate conditions,” Energy Build., vol. 245, p. 111076, Aug. 2021, doi: 10.1016/j.enbuild.2021.111076.
[46]      A. Emamianfar, Y. Tretiak, and R. Kosarevska, “CLASSIFICATION OF NATURAL CLIMATIC ZONES FOR ENERGYEFFICIENT ARCHITECTURAL SOLUTIONS FOR IRANIAN SCHOOLS,” Urban Dev. Spat. Plan., no. 87, pp. 43–55, Oct. 2024, doi: 10.32347/2076-815x.2024.87.43-55.
[47]      R. A. T. Alothman, A. R. Abdin, and A. H. Mahmoud, “The effect of using vegetated façades on CO2 emissions in multistory residential buildings, in cold semiarid and hot arid climate,” IOP Conf. Ser. Earth Environ. Sci., vol. 1113, no. 1, p. 012020, Dec. 2022, doi: 10.1088/1755-1315/1113/1/012020.
[48]      M. Borna and M. Yeganeh, “Analysis of the impact of growing green walls based on the reduction of PM2.5 particles in the resilient central urban fabric,” Front. Built Environ., vol. 10, p. 1443554, Sept. 2024, doi: 10.3389/fbuil.2024.1443554.
[49]      K. Karimi, M. Farrokhzad, G. Roshan, and M. Aghdasi, “Evaluation of effects of a green wall as a sustainable approach on reducing energy use in temperate and humid areas,” Energy Build., vol. 262, p. 112014, May 2022, doi: 10.1016/j.enbuild.2022.112014.
[50]      S. Carlucci, M. Charalambous, and J. N. Tzortzi, “Monitoring and performance evaluation of a green wall in a semi-arid Mediterranean climate,” J. Build. Eng., vol. 77, p. 107421, Oct. 2023, doi: 10.1016/j.jobe.2023.107421.
[51]      A. B. Daemei, E. Shafiee, A. A. Chitgar, and S. Asadi, “Investigating the thermal performance of green wall: Experimental analysis, deep learning model, and simulation studies in a humid climate,” Build. Environ., vol. 205, p. 108201, Nov. 2021, doi: 10.1016/j.buildenv.2021.108201.
[52]      Y. Shi and K. Kim, “Fabrication of hydrophilic and hydrophobic membranes inspired by the phenomenon of water absorption and storage of cactus,” Front. Mater., vol. 9, Sept. 2022, doi: 10.3389/fmats.2022.966692.
[53]      S. Bianchi, C. Andriotis, T. Klein, and M. Overend, “Multi-criteria design methods in façade engineering: State-of-the-art and future trends,” Build. Environ., vol. 250, p. 111184, Feb. 2024, doi: 10.1016/j.buildenv.2024.111184.
[54]      M. Rajabi, J. M. Sardroud, and A. Kheyroddin, “Green standard model using machine learning: identifying threats and opportunities facing the implementation of green building in Iran,” Environ. Sci. Pollut. Res., vol. 28, no. 44, pp. 62796–62808, Nov. 2021, doi: 10.1007/s11356-021-14991-3.
[55]      S. Ali Sadat, M. Vakilalroaya Fini, H. Hashemi-Dezaki, and M. Nazififard, “Barrier analysis of solar PV energy development in the context of Iran using fuzzy AHP-TOPSIS method,” Sustain. Energy Technol. Assess., vol. 47, p. 101549, Oct. 2021, doi: 10.1016/j.seta.2021.101549.