[1] K. Fardnia, H. Yousefi, and M. Abdoos, “A bibliometric analysis of carbon and water footprints in renewable energy: The post-COVID-19 landscape,” Jul. 01, 2025, KeAi Communications Co. doi: 10.1016/j.grets.2024.100162.
[2] F. Rasaei, H. Yousefi, M. Razeghi, A. Naseri, M. Abdoos, and R. Ghasempour, “Optimal selection of CSP site for desalination system using GIS and AHP method in Hormozgan province, Iran,” Energy Reports, vol. 13, pp. 2255–2268, Jun. 2025, doi: 10.1016/j.egyr.2025.01.082.
[3] Goetzberger, A.; Zastrow, A. On the Coexistence of Solar-Energy Conversion and Plant Cultivation. Int. J. Sol. Energy 1982, 1, 55–69.
[4] Proctor, K.W.; Murthy, G.S.; Higgins, C.W. Agrivoltaics align with green new deal goals while supporting investment in the us’ rural economy. Sustainability 2021, 13, 137.
[5] Weselek, A.; Ehmann, A.; Zikeli, S.; Lewandowski, I.; Schindele, S.; Högy, P. Agrophotovoltaic systems: Applications, challenges, and opportunities. A review. Agron. Sustain. Dev. 2019, 39, 1–20.
[6] Dupraz, C.; Marrou, H.; Talbot, G.; Dufour, L.; Nogier, A.; Ferard, Y. Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes. Renew. Energy 2011, 36, 2725–2732.
[7] Mavani, D.D.; Chauhan, P.M.; Joshi, V. Beauty of Agrivoltaic System regarding double utilization of same piece of land for Generation of Electricity & Food Production. Glob. Sci. J. 2019, 10, 118–148.
[8] Adeh, E.H.; Good, S.P.; Calaf, M.; Higgins, C.W. Solar PV Power Potential is Greatest Over Croplands. Sci. Rep. 2019, 9, 1–6.
[9] Lytle, W.; Meyer, T.K.; Tanikella, N.G.; Burnham, L.; Engel, J.; Schelly, C.; Pearce, J.M. Conceptual Design and Rationale for a New Agrivoltaics Concept: Pasture-Raised Rabbits and Solar Farming. J. Clean. Prod. 2021, 282, 124476.
[10] Majumdar, D.; Pasqualetti, M.J. Dual use of agricultural land: Introducing ‘agrivoltaics’ in Phoenix Metropolitan Statistical Area, USA. Landsc. Urban Plan. 2018, 170, 150–168.
[11] Metsolar What is Agrivoltaics? How Can Solar Energy and AgricultureWork Together? [Online]. Available: https://metsolar.eu/blog/what-is-agrivoltaics-how-can-solar-energy-and-agriculture-work-together/ (accessed on 1 October 2020).
[12] IEA. World Energy Outlook 2020. [Online]. Available: https://www.iea.org/reports/world-energy-outlook-2019 (accessed on 21 March 2021).
[13] Santra, P.; Pande, P.C.; Kumar, S.; Mishra, D.; Singh, R.K. Agri-voltaics or solar farming: The concept of integrating solar PV based electricity generation and crop production in a single land use system. Int. J. Renew. Energy Res. 2017, 7, 694–699.
[14] Marrou, H.;Wery, J.; Dufour, L.; Dupraz, C. Productivity and radiation use efficiency of lettuces grown in the partial shade of photovoltaic panels. Eur. J. Agron. 2013, 44, 54–66.
[15] Kumar, S.; Saravaiya, S.N.; Pandey, A.K. Precision Farming and Protected Cultivation: Concepts and Applications, 1st ed.; CRC Press: Oxon, UK, 2021; ISBN 9781032052762.
[16] Hernandez, R.R.; Armstrong, A.; Burney, J.; Ryan, G.; Moore-O’Leary, K.; Diédhiou, I.; Grodsky, S.M.; Saul-Gershenz, L.; Davis, R.; Macknick, J.; et al. Techno–ecological synergies of solar energy for global sustainability. Nat. Sustain. 2019, 2, 560–568.
[17] FOA. World Agriculture: Towards 2015/2030 Summary Report; FAO: Rome, Italy, 2002.
[18] Schindele, S.; Trommsdorff, M.; Schlaak, A.; Obergfell, T.; Bopp, G.; Reise, C.; Braun, C.;Weselek, A.; Bauerle, A.; Högy, P.; et al. Implementation of agrophotovoltaics: Techno-economic analysis of the price-performance ratio and its policy implications. Appl. Energy 2020, 265, 114737.
[19] Pascaris, A.S.; Schelly, C.; Pearce, J.M. A First Investigation of Agriculture Sector Perspectives on the Opportunities and Barriers for Agrivoltaics. Agronomy 2020, 10, 1885.
[20] E. Mouhib et al., “Enhancing land use: Integrating bifacial PV and olive trees in agrivoltaic systems,” Appl Energy, vol. 359, Apr. 2024, doi: 10.1016/j.apenergy.2024.122660.
[21] Othman, N.F.; Mat Su, A.S.; Ya’Acob, M.E. Promising Potentials of Agrivoltaic Systems for the Development of Malaysia Green Economy. IOP Conf. Ser. Earth Environ. Sci. 2018, 146, 012002.
[22] Kumpanalaisatit, M.; Setthapun, W.; Sintuya, H.; Jansri, S.N. Design and Test of Agri—Voltaic System. Turk. J. Comput. Math. Educ. 2021, 12, 2395–2404.
[23] Othman, N.F.; Ya’Acob, M.E.; Abdul-Rahim, A.S.; Hizam, H.; Farid, M.M.; Abd Aziz, S. Inculcating herbal plots as effective cooling mechanism in urban planning. Acta Hortic. 2017, 1152, 235–242..
[24] Allardyce, C.S.; Fankhauser, C.; Zakeeruddin, S.M.; Grätzel, M.; Dyson, P.J. The influence of greenhouse-integrated photovoltaics on crop production. Sol. Energy 2017, 155, 517–522.
[25] Chel, K. Renewable energy for sustainable agriculture. Agron. Sustain. Dev. 2011, 31, 91–118.
[26] Othman, N.F.; Ya’acob, M.E.; Abdul-Rahim, A.S.; Shahwahid Othman, M.; Radzi, M.A.M.; Hizam, H.; Wang, Y.D.; Ya’Acob, A.M.; Jaafar, H.Z.E. Embracing new agriculture commodity through integration of Java Tea as high Value Herbal crops in solar PV farms. J. Clean. Prod. 2015, 91, 71–77.
[27] Zhai, M.; Huang, G.; Liu, L.; Zheng, B.; Guan, Y. Inter-regional carbon flows embodied in electricity transmission: Network simulation for energy-carbon nexus. Renew. Sustain. Energy Rev. 2020, 118, 109511.
[28] Othman, N.F.; Yap, S.; Ya’Acob, M.E.; Hizam, H.; Su, A.S.M.; Iskandar, N. Performance evaluation for agrovoltaic DC generation in tropical climatic conditions. AIP Conf. Proc. 2019, 2129, 020006.
[29] Agostini, A.; Colauzzi, M.; Amaducci, S. Innovative agrivoltaic systems to produce sustainable energy: An economic and environmental assessment. Appl. Energy 2021, 281, 116102.
[30] Burgess, P.; Graves, A.; de Jalón, S.G.; Palma, J.; Dupraz, C.; van Noordwijk, M. Modelling Agroforestry Systems. In Agroforestry for Sustainable Agriculture; Burleigh Dodds Science Publishing: Cambridge, UK, 2019; pp. 209–238.
[31] Elamri, Y.; Cheviron, B.; Lopez, J.M.; Dejean, C.; Belaud, G.Water budget and crop modelling for agrivoltaic systems: Application to irrigated lettuces. Agric. Water Manag. 2018, 208, 440–453.
[32] Kostik, N.; Bobyl, A.; Rud, V.; Salamov, I. The potential of agrivoltaic systems in the conditions of southern regions of Russian Federation. IOP Conf. Ser. Earth Environ. Sci. 2020, 578, 012047.
[33] Sekiyama, T.; Nagashima, A. Solar sharing for both food and clean energy production: Performance of agrivoltaic systems for corn, a typical shade-intolerant crop. Environments 2019, 6, 65.
[34] Kuemmel, B.; Langer, V.; Magid, J.; De Neergaard, A.; Porter, J.R. Energetic, economic and ecological balances of a combined food and energy system. Biomass Bioenergy 1998, 15, 407–416.
[35] Al-Saidi, M.; Lahham, N. Solar energy farming as a development innovation for vulnerable water basins. Dev. Pract. 2019, 29, 619–634.
[36] Ayush Das, S.D. Simulation and Implementation of Single Axis Solar Tracker Ayush. Int. Res. J. Eng. Technol. 2020, 7, 756–761.
[37] Dinesh, H.; Pearce, J.M. The potential of agrivoltaic systems. Renew. Sustain. Energy Rev. 2016, 54, 299–308.
[38] Dufour, L.; Metay, A.; Talbot, G.; Dupraz, C. Assessing light competition for cereal production in temperate agroforestry systems using experimentation and crop modelling. J. Agron. Crop Sci. 2013, 199, 217–227.
[40] Kenning, T. TNB connects first phase of Malaysia’s largest solar project to the grid. [Online]. Available: https://www.pv-tech.org/tnb-connects-malaysias-largest-solar-project-to-the-grid/ (accessed on 25 March 2021).
[41] Cossu, M.; Cossu, A.; Deligios, P.A.; Ledda, L.; Li, Z.; Fatnassi, H.; Poncet, C.; Yano, A. Assessment and comparison of the solar radiation distribution inside the main commercial photovoltaic greenhouse types in Europe. Renew. Sustain. Energy Rev. 2018, 94, 822–834.
[42] Makavana, J.M.; Kalaiya, S.V.; Chauhan, P.M.; Dulawat, M.S. Advantage of Agrivoltaics Across the Food-Energy-Water Connection. ACTA Sci. Agric. 2020, 4, 15–17.
[43] Ademe et al. (2021) Characterising solar PV projects on agricultural land and agrivoltaism - Executive Summary. [Online]. Available: https://librairie.ademe.fr/energies-renouvelables-reseaux-et-stockage/4992-caracteriser-les-projets-photovoltaiques-sur-terrains-agricoles-et-l-agrivoltaisme.html.
[44] Gorjian S, Bousi E, Ozdemir OE, Trommsdorff M, Kumar NM, Anand A, et al. Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology. Renew Sustain Energy Rev 2022;158:112126.
[45] Mourtzikou A, Sygkridou D, Georgakopoulos T, Katsagounos G, Stathatos E. Semi- Transparent Dye-Sensitized Solar Panels for Energy Autonomous Greenhouses. Int J Struct Constr Eng 2020;14:10011098.
[46] S. Gorjian et al., “Technological advancements and research prospects of innovative concentrating agrivoltaics,” Appl Energy, vol. 337, May 2023, doi: 10.1016/j.apenergy.2023.120799.
[47] Marrou H, Dufour L, Wery J. How does a shelter of solar panels influence water flows in a soil–crop system? Eur J Agron 2013;50:38–51.
[48] Wiesenfarth M, Philipps SP, Bett AW, Horowitz K, Kurtz S. Current Status of Concentrator Photovoltaic (CPV) Technology. 2017. Doi: https://www.ise. fraunhofer.de/.
[49] Gonz´alez-Correa D, Osorio-G´omez G, Mejía-Guti´errez R. Concept of a methodical process for the design of concentrating photovoltaic systems according to the context of use. In: Sulima O V., Conibeer G, editors., 2016, p. 99370O. Doi: 10.1117/12.2237209.
[50] Maka AOM, O’Donovan TS. A review of thermal load and performance characterisation of a high concentrating photovoltaic (HCPV) solar receiver assembly. Sol Energy 2020;206:35–51.
https://doi.org/10.1016/j. solener.2020.05.022.
[51] Antonini P. Concentrated PhotoVoltaics (CPV): Is it a real opportunity? EPJ Web Conf., vol. 54, 2013. Doi: 10.1051/epjconf/20135401015.
[52] Gorjian S, Calise F, Kant K, Ahamed MS, Copertaro B, Najafi G, et al. A review on opportunities for implementation of solar energy technologies in agricultural greenhouses. J Clean Prod 2021;285:124807. https://doi.org/10.1016/j. jclepro.2020.124807.
[53] Zhang Z, Zhang F, Li M, Liu L, Lv H, Liu Y, et al. Progress in agriculture photovoltaic leveraging CPV, 2018, p. 110006. Doi: 10.1063/1.5053554.
[54] Hirai D, Okamoto K, Yamada N. Fabrication of highly transparent concentrator photovoltaic module for efficient dual land use in middle DNI region. 2015 IEEE 42nd Photovolt. Spec. Conf., IEEE; 2015, p. 1–4. Doi: 10.1109/ PVSC.2015.7355759.
[55] M. Razeghi et al., “Evaluating the economic impact of solar energy on local industries in Semnan, Iran,” Future Sustainability, vol. 3, no. 1, pp. 49–58, Feb. 2025, doi: 10.55670/fpll.fusus.3.1.5.
[56] P. Jain, G. Raina, S. Sinha, P. Malik, and S. Mathur, “Agrovoltaics: Step towards sustainable energy-food combination,” Bioresour Technol Rep, vol. 15, Sep. 2021, doi: 10.1016/j.biteb.2021.100766.
[57] A. Tabrizi, H. Yousefi, M. Abdoos, and R. Ghasempour, “Evaluating renewable energy adoption in G7 countries: a TOPSIS-based multi-criteria decision analysis,” Discover Energy, vol. 5, no. 1, p. 2, Jan. 2025, doi: 10.1007/s43937-025-00064-w.
[58] M. A. Z. Abidin, M. N. Mahyuddin, and M. A. A. M. Zainuri, “Solar photovoltaic architecture and agronomic management in agrivoltaic system: A review,” Jul. 02, 2021, MDPI AG. doi: 10.3390/su13147846.
[59] Anatoli. Chatzipanagi, Nigel. Taylor, and Arnulf. Jaeger-Waldau, Overview of the potential and challenges for agri-photovoltaics in the European Union. Publications Office of the European Union, 2023.
[60] S. Gorjian et al., “Technological advancements and research prospects of innovative concentrating agrivoltaics,” Appl Energy, vol. 337, May 2023, doi: 10.1016/j.apenergy.2023.120799.