معرفی سیستم‌های اگری‌ولتائیک و بررسی شرایط آن

نوع مقاله : مروری

نویسندگان

1 گروه مهندسی سیستم‌های انرژی، دانشکدۀ مهندسی مکانیک، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

2 گروه پژوهشی انرژی‌های تجدیدپذیر، پژوهشگاه نیرو، تهران، ایران

چکیده

تأمین انرژی طی تاریخ یکی از نیازهای اساسی بشر بوده است. نحوۀ حصول انرژی به نوعی با تمدن و پیشرفت تکنولوژیکی جامعه رابطۀ تنگاتنگی دارد. در حال حاضر، با توجه به عواملی همچون افزایش جمعیت و محدودیت اراضی برای کشاورزی در کنار امنیت انرژی و ملاحظات هزینه، راهکاری به عنوان سیستم‌های اگری‌ولتائیک ارائه شده است؛ این سیستم یک استراتژی برای هم‌مکانی انرژی‌های تجدیدپذیر، محصولات کشاورزی و دامداری است. برای ورود یک محصول به بازارهای جهانی، برتری در توسعۀ تکنولوژی و میزان بازدهی عوامل تعیین‌کننده‌ای هستند؛ به این علت در سیستم‌های اگری‌ولتائیک علاوه ‌بر تمرکز به مدیریت انرژی، بر مدیریت زراعی (محصول و آب) نیز توجه ویژه‌ای می‌شود. همچنین، به سیستم آبیاری سیستماتیک برای جلوگیری از آسیب به ساختار پنل خورشیدی مورد نیاز است. به طور خلاصه، در سیستم‌های اگری‌ولتائیک افزایش بازده در ترکیب مزارع خورشیدی و گیاهی با کاهش اثرات گرمایش جهانی و برآورده کردن امنیت غذا ـ انرژی ـ آب مد نظر است. مسائل مربوط به قیمت‌گذاری، راندمان، و تولید داخلی پنل‌های خورشیدی از جمله چالش‌ها و مسیرهای تحقیقاتی آینده هستند که نیاز به بررسی بیشتر دارند. در این پژوهش در خصوص کلیات اگری‌ولتائیک بحث می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Introducing agrivoltaic systems and examining their conditions

نویسندگان [English]

  • Pedram Negarandeh 1
  • Mohsen Salimi 2
  • Majid Amidpour 1
1 Department of Energy Systems Engineering, Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran
2 Renewable Energy Research Department, Niroo Research Institute (NRI), Tehran, Iran
چکیده [English]

Energy supply has been one of the most basic needs of mankind throughout history. The way of obtaining energy is closely related to the civilization and technological progress of society. Currently, considering factors such as population growth and limited land for agriculture, along with energy security and cost considerations, a solution has been proposed as agrivoltaic systems; this system is a strategy for the co-location of renewable energies, agricultural products and livestock. For a product to enter global markets, superiority in technological development and efficiency are decisive factors; therefore, in agrivoltaic systems, in addition to focusing on energy management, special attention is also paid to crop management (crop and water). A systematic irrigation system is also needed to prevent damage to the solar panel structure. In summary, agrivoltaic systems aim to increase the efficiency of solar and crop farms by reducing the effects of global warming and meeting food-energy-water security. Pricing, efficiency, and domestic production of solar panels are among the key challenges and future research directions that require further investigation. This study discusses the general aspects of agrivoltaic systems.

کلیدواژه‌ها [English]

  • Agrivoltaic system
  • energy
  • agriculture
  • solar panel
[1]        K. Fardnia, H. Yousefi, and M. Abdoos, “A bibliometric analysis of carbon and water footprints in renewable energy: The post-COVID-19 landscape,” Jul. 01, 2025, KeAi Communications Co. doi: 10.1016/j.grets.2024.100162.
[2]        F. Rasaei, H. Yousefi, M. Razeghi, A. Naseri, M. Abdoos, and R. Ghasempour, “Optimal selection of CSP site for desalination system using GIS and AHP method in Hormozgan province, Iran,” Energy Reports, vol. 13, pp. 2255–2268, Jun. 2025, doi: 10.1016/j.egyr.2025.01.082.
[3]        Goetzberger, A.; Zastrow, A. On the Coexistence of Solar-Energy Conversion and Plant Cultivation. Int. J. Sol. Energy 1982, 1, 55–69.
[4]        Proctor, K.W.; Murthy, G.S.; Higgins, C.W. Agrivoltaics align with green new deal goals while supporting investment in the us’ rural economy. Sustainability 2021, 13, 137.
[5]        Weselek, A.; Ehmann, A.; Zikeli, S.; Lewandowski, I.; Schindele, S.; Högy, P. Agrophotovoltaic systems: Applications, challenges, and opportunities. A review. Agron. Sustain. Dev. 2019, 39, 1–20.
[6]        Dupraz, C.; Marrou, H.; Talbot, G.; Dufour, L.; Nogier, A.; Ferard, Y. Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes. Renew. Energy 2011, 36, 2725–2732.
[7]        Mavani, D.D.; Chauhan, P.M.; Joshi, V. Beauty of Agrivoltaic System regarding double utilization of same piece of land for Generation of Electricity & Food Production. Glob. Sci. J. 2019, 10, 118–148.
[8]        Adeh, E.H.; Good, S.P.; Calaf, M.; Higgins, C.W. Solar PV Power Potential is Greatest Over Croplands. Sci. Rep. 2019, 9, 1–6.
[9]        Lytle, W.; Meyer, T.K.; Tanikella, N.G.; Burnham, L.; Engel, J.; Schelly, C.; Pearce, J.M. Conceptual Design and Rationale for a New Agrivoltaics Concept: Pasture-Raised Rabbits and Solar Farming. J. Clean. Prod. 2021, 282, 124476.
[10]      Majumdar, D.; Pasqualetti, M.J. Dual use of agricultural land: Introducing ‘agrivoltaics’ in Phoenix Metropolitan Statistical Area, USA. Landsc. Urban Plan. 2018, 170, 150–168.
[11]      Metsolar What is Agrivoltaics? How Can Solar Energy and AgricultureWork Together? [Online]. Available: https://metsolar.eu/blog/what-is-agrivoltaics-how-can-solar-energy-and-agriculture-work-together/ (accessed on 1 October 2020).
[12]      IEA. World Energy Outlook 2020. [Online]. Available: https://www.iea.org/reports/world-energy-outlook-2019 (accessed on 21 March 2021).
[13]      Santra, P.; Pande, P.C.; Kumar, S.; Mishra, D.; Singh, R.K. Agri-voltaics or solar farming: The concept of integrating solar PV based electricity generation and crop production in a single land use system. Int. J. Renew. Energy Res. 2017, 7, 694–699.
[14]      Marrou, H.;Wery, J.; Dufour, L.; Dupraz, C. Productivity and radiation use efficiency of lettuces grown in the partial shade of photovoltaic panels. Eur. J. Agron. 2013, 44, 54–66.
[15]      Kumar, S.; Saravaiya, S.N.; Pandey, A.K. Precision Farming and Protected Cultivation: Concepts and Applications, 1st ed.; CRC Press: Oxon, UK, 2021; ISBN 9781032052762.
[16]      Hernandez, R.R.; Armstrong, A.; Burney, J.; Ryan, G.; Moore-O’Leary, K.; Diédhiou, I.; Grodsky, S.M.; Saul-Gershenz, L.; Davis, R.; Macknick, J.; et al. Techno–ecological synergies of solar energy for global sustainability. Nat. Sustain. 2019, 2, 560–568.
[17]      FOA. World Agriculture: Towards 2015/2030 Summary Report; FAO: Rome, Italy, 2002.
[18]      Schindele, S.; Trommsdorff, M.; Schlaak, A.; Obergfell, T.; Bopp, G.; Reise, C.; Braun, C.;Weselek, A.; Bauerle, A.; Högy, P.; et al. Implementation of agrophotovoltaics: Techno-economic analysis of the price-performance ratio and its policy implications. Appl. Energy 2020, 265, 114737.
[19]      Pascaris, A.S.; Schelly, C.; Pearce, J.M. A First Investigation of Agriculture Sector Perspectives on the Opportunities and Barriers for Agrivoltaics. Agronomy 2020, 10, 1885.
[20]      E. Mouhib et al., “Enhancing land use: Integrating bifacial PV and olive trees in agrivoltaic systems,” Appl Energy, vol. 359, Apr. 2024, doi: 10.1016/j.apenergy.2024.122660.
[21]      Othman, N.F.; Mat Su, A.S.; Ya’Acob, M.E. Promising Potentials of Agrivoltaic Systems for the Development of Malaysia Green Economy. IOP Conf. Ser. Earth Environ. Sci. 2018, 146, 012002.
[22]      Kumpanalaisatit, M.; Setthapun, W.; Sintuya, H.; Jansri, S.N. Design and Test of Agri—Voltaic System. Turk. J. Comput. Math. Educ. 2021, 12, 2395–2404.
[23]      Othman, N.F.; Ya’Acob, M.E.; Abdul-Rahim, A.S.; Hizam, H.; Farid, M.M.; Abd Aziz, S. Inculcating herbal plots as effective cooling mechanism in urban planning. Acta Hortic. 2017, 1152, 235–242..
[24]      Allardyce, C.S.; Fankhauser, C.; Zakeeruddin, S.M.; Grätzel, M.; Dyson, P.J. The influence of greenhouse-integrated photovoltaics on crop production. Sol. Energy 2017, 155, 517–522.
[25]      Chel, K. Renewable energy for sustainable agriculture. Agron. Sustain. Dev. 2011, 31, 91–118.
[26]      Othman, N.F.; Ya’acob, M.E.; Abdul-Rahim, A.S.; Shahwahid Othman, M.; Radzi, M.A.M.; Hizam, H.; Wang, Y.D.; Ya’Acob, A.M.; Jaafar, H.Z.E. Embracing new agriculture commodity through integration of Java Tea as high Value Herbal crops in solar PV farms. J. Clean. Prod. 2015, 91, 71–77.
[27]      Zhai, M.; Huang, G.; Liu, L.; Zheng, B.; Guan, Y. Inter-regional carbon flows embodied in electricity transmission: Network simulation for energy-carbon nexus. Renew. Sustain. Energy Rev. 2020, 118, 109511.
[28]      Othman, N.F.; Yap, S.; Ya’Acob, M.E.; Hizam, H.; Su, A.S.M.; Iskandar, N. Performance evaluation for agrovoltaic DC generation in tropical climatic conditions. AIP Conf. Proc. 2019, 2129, 020006.
[29]      Agostini, A.; Colauzzi, M.; Amaducci, S. Innovative agrivoltaic systems to produce sustainable energy: An economic and environmental assessment. Appl. Energy 2021, 281, 116102.
[30]      Burgess, P.; Graves, A.; de Jalón, S.G.; Palma, J.; Dupraz, C.; van Noordwijk, M. Modelling Agroforestry Systems. In Agroforestry for Sustainable Agriculture; Burleigh Dodds Science Publishing: Cambridge, UK, 2019; pp. 209–238.
[31]      Elamri, Y.; Cheviron, B.; Lopez, J.M.; Dejean, C.; Belaud, G.Water budget and crop modelling for agrivoltaic systems: Application to irrigated lettuces. Agric. Water Manag. 2018, 208, 440–453.
[32]      Kostik, N.; Bobyl, A.; Rud, V.; Salamov, I. The potential of agrivoltaic systems in the conditions of southern regions of Russian Federation. IOP Conf. Ser. Earth Environ. Sci. 2020, 578, 012047.
[33]      Sekiyama, T.; Nagashima, A. Solar sharing for both food and clean energy production: Performance of agrivoltaic systems for corn, a typical shade-intolerant crop. Environments 2019, 6, 65.
[34]      Kuemmel, B.; Langer, V.; Magid, J.; De Neergaard, A.; Porter, J.R. Energetic, economic and ecological balances of a combined food and energy system. Biomass Bioenergy 1998, 15, 407–416.
[35]      Al-Saidi, M.; Lahham, N. Solar energy farming as a development innovation for vulnerable water basins. Dev. Pract. 2019, 29, 619–634.
[36]      Ayush Das, S.D. Simulation and Implementation of Single Axis Solar Tracker Ayush. Int. Res. J. Eng. Technol. 2020, 7, 756–761.
[37]      Dinesh, H.; Pearce, J.M. The potential of agrivoltaic systems. Renew. Sustain. Energy Rev. 2016, 54, 299–308.
[38]      Dufour, L.; Metay, A.; Talbot, G.; Dupraz, C. Assessing light competition for cereal production in temperate agroforestry systems using experimentation and crop modelling. J. Agron. Crop Sci. 2013, 199, 217–227.
[39]      Macmillan Learning The Electromagnetic Spectrum. Available online: https://sites.google.com/site/chempendix/em-spectrum (accessed on 20 January 2001). 
[40]      Kenning, T. TNB connects first phase of Malaysia’s largest solar project to the grid. [Online]. Available: https://www.pv-tech.org/tnb-connects-malaysias-largest-solar-project-to-the-grid/ (accessed on 25 March 2021).
[41]      Cossu, M.; Cossu, A.; Deligios, P.A.; Ledda, L.; Li, Z.; Fatnassi, H.; Poncet, C.; Yano, A. Assessment and comparison of the solar radiation distribution inside the main commercial photovoltaic greenhouse types in Europe. Renew. Sustain. Energy Rev. 2018, 94, 822–834.
[42]      Makavana, J.M.; Kalaiya, S.V.; Chauhan, P.M.; Dulawat, M.S. Advantage of Agrivoltaics Across the Food-Energy-Water Connection. ACTA Sci. Agric. 2020, 4, 15–17.
[43]      Ademe et al. (2021) Characterising solar PV projects on agricultural land and agrivoltaism - Executive Summary. [Online]. Available: https://librairie.ademe.fr/energies-renouvelables-reseaux-et-stockage/4992-caracteriser-les-projets-photovoltaiques-sur-terrains-agricoles-et-l-agrivoltaisme.html.
[44]      Gorjian S, Bousi E, Ozdemir OE, Trommsdorff M, Kumar NM, Anand A, et al. Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology. Renew Sustain Energy Rev 2022;158:112126.
[45]      Mourtzikou A, Sygkridou D, Georgakopoulos T, Katsagounos G, Stathatos E. Semi- Transparent Dye-Sensitized Solar Panels for Energy Autonomous Greenhouses. Int J Struct Constr Eng 2020;14:10011098.
[46]      S. Gorjian et al., “Technological advancements and research prospects of innovative concentrating agrivoltaics,” Appl Energy, vol. 337, May 2023, doi: 10.1016/j.apenergy.2023.120799.
[47]      Marrou H, Dufour L, Wery J. How does a shelter of solar panels influence water flows in a soil–crop system? Eur J Agron 2013;50:38–51.
[48]      Wiesenfarth M, Philipps SP, Bett AW, Horowitz K, Kurtz S. Current Status of Concentrator Photovoltaic (CPV) Technology. 2017. Doi: https://www.ise. fraunhofer.de/.
[49]      Gonz´alez-Correa D, Osorio-G´omez G, Mejía-Guti´errez R. Concept of a methodical process for the design of concentrating photovoltaic systems according to the context of use. In: Sulima O V., Conibeer G, editors., 2016, p. 99370O. Doi: 10.1117/12.2237209.
[50]      Maka AOM, O’Donovan TS. A review of thermal load and performance characterisation of a high concentrating photovoltaic (HCPV) solar receiver assembly. Sol Energy 2020;206:35–51. https://doi.org/10.1016/j. solener.2020.05.022.
[51]      Antonini P. Concentrated PhotoVoltaics (CPV): Is it a real opportunity? EPJ Web Conf., vol. 54, 2013. Doi: 10.1051/epjconf/20135401015.
[52]      Gorjian S, Calise F, Kant K, Ahamed MS, Copertaro B, Najafi G, et al. A review on opportunities for implementation of solar energy technologies in agricultural greenhouses. J Clean Prod 2021;285:124807. https://doi.org/10.1016/j. jclepro.2020.124807.
[53]      Zhang Z, Zhang F, Li M, Liu L, Lv H, Liu Y, et al. Progress in agriculture photovoltaic leveraging CPV, 2018, p. 110006. Doi: 10.1063/1.5053554.
[54]      Hirai D, Okamoto K, Yamada N. Fabrication of highly transparent concentrator photovoltaic module for efficient dual land use in middle DNI region. 2015 IEEE 42nd Photovolt. Spec. Conf., IEEE; 2015, p. 1–4. Doi: 10.1109/ PVSC.2015.7355759.
[55]      M. Razeghi et al., “Evaluating the economic impact of solar energy on local industries in Semnan, Iran,” Future Sustainability, vol. 3, no. 1, pp. 49–58, Feb. 2025, doi: 10.55670/fpll.fusus.3.1.5.
[56]      P. Jain, G. Raina, S. Sinha, P. Malik, and S. Mathur, “Agrovoltaics: Step towards sustainable energy-food combination,” Bioresour Technol Rep, vol. 15, Sep. 2021, doi: 10.1016/j.biteb.2021.100766.
[57]      A. Tabrizi, H. Yousefi, M. Abdoos, and R. Ghasempour, “Evaluating renewable energy adoption in G7 countries: a TOPSIS-based multi-criteria decision analysis,” Discover Energy, vol. 5, no. 1, p. 2, Jan. 2025, doi: 10.1007/s43937-025-00064-w.
[58]      M. A. Z. Abidin, M. N. Mahyuddin, and M. A. A. M. Zainuri, “Solar photovoltaic architecture and agronomic management in agrivoltaic system: A review,” Jul. 02, 2021, MDPI AG. doi: 10.3390/su13147846.
[59]      Anatoli. Chatzipanagi, Nigel. Taylor, and Arnulf. Jaeger-Waldau, Overview of the potential and challenges for agri-photovoltaics in the European Union. Publications Office of the European Union, 2023.
[60]      S. Gorjian et al., “Technological advancements and research prospects of innovative concentrating agrivoltaics,” Appl Energy, vol. 337, May 2023, doi: 10.1016/j.apenergy.2023.120799.