بررسی و شبیه سازی تأثیر حسگرهای میکروالکترومکانیکی روی عملکرد توربین‌های بادی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، مهندسی مکاترونیک، واحد علوم و تحقیقات، دانشگاه ازاد اسلامی؛ آزمایشگاه ساخت ادوات پیشرفتۀ میکرو نانو، گروه مهندسی سیستم‌های میکرو و نانوالکترومکانیک، دانشکدۀ سامانه‌های هوشمند، دانشگاه تهران

2 گروه ریزفناوری، دانشکدۀ سامانه‌های هوشمند، دانشگاه تهران؛ آزمایشگاه ساخت ادوات پیشرفتۀ میکرو نانو، گروه مهندسی سیستم‌های میکرو و نانوالکترومکانیک، دانشکدۀ سامانه‌های هوشمند، دانشگاه تهران

10.22059/ses.2025.389998.1118

چکیده

توربین‌های بادی نقش کلیدی در سیستم‌های انرژی تجدیدپذیر ایفا می‌کنند و با توجه به حرکت جهانی به سمت منابع انرژی پایدار، استفاده از این فناوری در حال گسترش است. این مقاله به بررسی تأثیر ناهماهنگی زاویۀ یاو بر ضریب توان (Cp) توربین بادی مرجع ۵ مگاواتی می‌پردازد. برای این‌منظور، شبیه‌سازی‌ها با استفادۀ دینامیک سیالات محاسباتی (CFD) انجام شده است. ناهماهنگی یاو که به عنوان انحراف محور روتور از جهت باد غالب تعریف می‌شود، عملکرد توربین را تحت تأثیر قرار می‌دهد و موجب کاهش توان تولیدی و افزایش تنش‌های مکانیکی می‌شود. نتایج شبیه‌سازی نشان می‌دهد حتی ناهماهنگی زاویه‌ای به میزان ۲ درجه می‌تواند کاهش 1درصدی در ضریب توان را به همراه داشته باشد. در ادامه، عملکرد حسگرهای مختلف شامل بادسنج‌ها و جهت‌سنج‌های سنتی، سیم داغ، صوتی، لیدار (LiDAR) و حسگرهای میکروالکترومکانیکی (MEMS) از نظر دقت، محدودۀ کاری، دمای عملیاتی و زمان پاسخ‌دهی بررسی شده است. یافته‌ها نشان می‌دهد حسگرهای سیم داغ، صوتی و MEMS به دلیل دقت زیاد، پاسخ سریع و پایداری در شرایط محیطی متغیر، گزینه‌های برتری برای شناسایی زاویۀ یاو و سرعت باد هستند. همچنین، حسگرهای MEMS به دلیل طراحی فشرده، مصرف انرژی پایین و هزینۀ مناسب، راهکاری ایده‌آل برای بهبود عملکرد توربین‌های بادی و کاهش هزینه‌های نگهداری ارائه می‌دهند. نتایج این مقاله اهمیت حسگرهای پیشرفته را در بهینه‌سازی عملکرد توربین‌های بادی و افزایش کارایی انرژی باد نشان می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation and Simulation of Micro-Electromechanical Sensors on Wind Turbine Performance

نویسندگان [English]

  • Kian Rafiei 1
  • Javad Koohsorkhi 2
1 Master Student of Mechatronic Engineering, Faculty of Mechanics, Electrical and Computer Engineering, Science and Research Branch, Islamic Azad University; Advanced Micro and Nano devices Lab., Department of MEMS and NEMS, Faculty of Intelligent Systems, University of Tehran
2 Associate Professor at Department of MEMS and NEMS, Faculty of Intelligent Systems, University of Tehran; Advanced Micro and Nano devices Lab., Department of MEMS and NEMS, Faculty of Intelligent Systems, University of Tehran
چکیده [English]

Wind turbines play a crucial role in renewable energy systems and, with the global shift towards sustainable energy sources, the use of this technology is expanding. This study examines the effect of yaw misalignment on the power coefficient (Cp) of a 5 MW reference wind turbine. Computational Fluid Dynamics (CFD) simulations were carried out for this purpose. Yaw misalignment, defined as the deviation of the rotor axis from the prevailing wind direction, impacts turbine performance by reducing power output and increasing mechanical stresses. The simulation results indicate that even a 2-degree yaw misalignment can result in a 1% reduction in the power coefficient. Furthermore, the performance of various sensors, including traditional anemometers and wind vanes, hot-wire sensors, acoustic sensors, LiDAR, and micro-electromechanical system (MEMS) sensors, were evaluated in terms of accuracy, working range, operational temperature, and response time. The findings reveal that hot-wire, acoustic, and MEMS sensors are superior in detecting yaw angle and wind speed due to their high accuracy, rapid response, and stability in varying environmental conditions. Additionally, MEMS sensors, with their compact design, low energy consumption, and reasonable cost, offer an ideal solution for improving wind turbine performance and reducing maintenance costs. This study highlights the significance of advanced sensors in optimizing wind turbine performance and enhancing wind energy efficiency.

کلیدواژه‌ها [English]

  • Wind turbine
  • Yaw incoherence
  • Microelectromechanical sensor
  • Sensitivity
  • Hot wire sensors
  • Selim Molla, Omar Farrok, Mohammad Jahangir Alam. Electrical energy and the environment: Prospects and upcoming challenges of the World's top leading countries. Renewable and Sustainable Energy Reviews. 2024 March ; 191.
  • Maedeh Maher, Afshin Danehkar, Hossein Yousefi. Assessing Wind Energy Potential In The Territorial Waters Of Hormozgan Province. Journal of Sustainable Energy Systems. 2024 May ; 2(3): 2980-8693.
  • Sepideh Abedi, Danial Ebrahiminia. Assessment of Renewable Energy Potential in Sistan and Baluchistan Province: Solar, Wind, Geothermal, and Bioenergy Sources. Journal of Sustainable Energy Systems. 2024 June; 2(4): 2980-8693.
  • Andreas Rott, Leo Höning, Paul Hulsman, Laura J. Lukassen, Christof Moldenhauer, Martin Kühn. Wind vane correction during yaw misalignment for horizontal-axis wind turbines. Wind Energy Science. 2023;: 1755–1770.
  • Mike T. van Dijk, Jan-Willem van Wingerden, Turaj Ashuri, Yaoyu Li, Mario A. Rotea. Yaw-Misalignment and its Impact on Wind Turbine Loads and Wind Farm Power Output. In ; 2016.
  • Bo Jing, Zheng Qian, Yan Pei, Lizhong Zhang, Tingyi Yang. Improving wind turbine efficiency through detection and calibration of yaw misalignment. Renewable Energy. 2020; 160: 1217e1227.
  • Chia-Yen Lee, Chih-Yung Wen, Hui-Hsiung Hou, Ruey-Jen Yang, Chien-Hsiung Tsai, Lung-Ming Fu. Design and characterization of MEMS-based flow-rate and flow-direction microsensor. Microfluid Nanofluid. 2009;: 363–371.
  • Knud A. Kragh, Morten H. Hansen, Lars C. Henriksen. Sensor comparison study for load alleviating wind turbine pitch control. WIND ENERGY. 2013; 17: 1891–1904.
  • Min-Soo Jeong, Sang-Woo Kim, In Lee, Seung-Jae Yoo, K.C. Park. The impact of yaw error on aeroelastic characteristics of a horizontal. Renewable Energy. 2013; 60: 256e268.
  • Shuting Wan, Lifeng Cheng, Xiaoling Sheng. Effects of Yaw Error on Wind Turbine Running Characteristics Based on the Equivalent Wind Speed Model. Energies. 2015; 8: 6286-6301.
  • Wenlong Tian, James H. VanZwieten, Parakram Pyakurel, Yanjun Li. Influences of yaw angle and turbulence intensity on the performance of a 20 kW in-stream hydrokinetic turbine. Energy. 2016; 111: 104-116.
  • S. Leu, J.M. Yu, J.J. Miau, S.J. Chen. MEMS flexible thermal flow sensors for measurement of unsteady flow above a pitching wind turbine blade. perimental Thermal and Fluid Science. 2016; 77: 167–178.
  • Nicolas Schärer, Denis Mikhaylov, Cédric Sievi, Badoui Hanna, Caroline Braud, Julien Deparday, et al. Aerodynamic Performance and Impact Analysis of a MEMS-Based Non-Invasive Monitoring System for Wind Turbine Blades. Signal Processing. 2024.
  • Moein Sarbandi ,Hamid Khaloozadeh. Quantifying the impact of sensor precision on power output of a wind turbine: A sensitivity analysis via Monte Carlo simulation study. Wind Engineering. 2024; 48: 497–517.
  • Belali Oskooei, J. Koohsorkhi, M. Mehrpooya. Simulation of plasma-assisted catalytic reduction of NOx, CO, and HC from diesel engine exhaust with COMSOL. Chemical Engineering Science. 2019; 197: 135-149.
  • Yunong Bao, Qinmin Yang. A Data-Mining Compensation Approach for Yaw Misalignment on Wind Turbine. IEEE Transactions on Industrial Informatics. 2021; 17: 8154 - 8164.
  • Ravi Pandit, David Infield, Tim Dodwel. Operational Variables for Improving Industrial Wind Operational Variables for Improving Industrial Wind Capabilities Using Data-Driven Techniques. TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT. 2021; 70.
  • Tony Burton, David Sharpe, Nick Jenkins, Ervin Bossanyi. WIND ENERGY HANDBOOK West Sussex: John Wiley & Sons; 2001.
  • Jonkman, S. Butterfield, W. Musial, G. Scott. Definition of a 5-MW Reference Wind Turbine for Offshore System Development. ; February 2009.
  • Qiqing Zhang ,Xiuling Wang. Numerical Investigation of Aerodynamic Performances for NREL 5-MW Offshore Wind Turbine. Wind. 2023; 3: 191–212.
  • Fraden Jacob. Handbook of Modern Sensors New York Heidelberg Dordrecht London: Springer ; 2010.
  • Miodrag Zlatanovic, Ivan Popovic, Zoran Grsic. FIELD TEST COMPARISON OF DIFFERENT WIND SENSORS. 2008.
  • Fatemeh Ejeian, Shohreh Azadi, Amir Razmjou, Yasin Orooji, Ajay Kottapalli, Majid Ebrahimi Warkiani, et al. Design and applications of MEMS flow sensors: A review. ensors and Actuators A: Physical. 2019;: 483-502.
  • Brent M. Bowen. Improved Wind and Turbulence Measurements Using a Low-Cost 3-D Sonic Anemometer at a Low-Wind Site. The Open Atmospheric Science Journal. 2008; 2: 131-138.
  • Tomasz Lipecki, Paulina Jami´nska-Gadomska, Andrzej Sumorek. Influence of Ultrasonic Wind Sensor Position on Measurement Accuracy under Full-Scale Conditions. sensors. 2020; 20.
  • Mingjia Shangguan, Jiawei Qiu, Jinlong Yuan, Zhifeng Shu, Lingfeng Zhou, Haiyun Xia. Doppler Wind Lidar From UV to NIR: A Review With Case Study Examples. Frontiers in Remote Sensing. 2022; 2.
  • Ebrahim Taiedi Nejad, Amir Ghasemi kordlar, Javad Koohsorkhi.. A four-wire micro anemometer in double cross shape with high mechanical stability for high sensitive air flow. Microelectronic Engineering. 2022; 262(1): 111831.
  • Ozak O. Esu, James A. Flint, imon J. Watson. Condition Monitoring of Wind Turbine Blades Using MEMS Accelerometers. Renewable Energy World Europe. 2019.
  • Idjeri, M. Laghrouche, J.Boussey. Wind Measurement Based on MEMS Micro-Anemometer With High Accuracy Using ANN Technique. Sensors Journal. 2017.
  • Zaheer Abbas, Mohtashim Mansoor, Muzaffar Habib, Zahid Mehmood. Review: MEMS sensors for flow separation detection. Microsystem Technologies. 2023; 29: 1253–1280.