معرفی ساختاری جهت پایش جریان‌های سرگردان در سیستم حمل‌ونقل ریلی برقی DC با رویکرد نگهداری بر مبنای وضعیت (CBM)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی سیستم‌های انرژی، دانشکدۀ مهندسی انرژی و منابع پایدار، دانشکدگان علوم و فناوری‌های میان‌رشته‌ای، دانشگاه تهران، تهران، ایران

2 رئیس دانشگاه حمل‌ونقل و ترافیک شهرداری تهران، تهران، ایران

چکیده

استفاده از ریل‌های حرکت به عنوان مسیر برگشت جریان الکتریکی ترن‌ها در سیستم‌ ریلی برقی DC، به علت کوچک بودن مقاومت الکتریکی (ضعف عایقی) بین ریل‌های حرکت و زمین و همچنین، اختلاف ولتاژ بین ریل و زمین، شرایط نفوذ بخشی از جریان برگشتی ترن را از طریق ریل‌های حرکت به زمین زیر ریل فراهم می‌کند که به جریان نشتی یا جریان سرگردان مشهور است. این جریان باعث ایجاد مشکلات متعددی از جمله خوردگی الکتروشیمیایی و کاهش طول عمر مفید ریل‌ها و تأسیسات فلزی زیرزمینی مجاور خط راه‌آهن برقی می‌شود. خوردگی الکتروشیمیایی ناشی از جریان‌های سرگردان در سازه‌های فلزی رخدادی بلند‌مدت است و نتایج حاصل از اندازه‌گیری‌های دوره‌ای جریان‌های سرگردان نامنظم نمی‌تواند نمایانگر میزان خوردگی باشد. بنابراین، اندازه‌گیری و پایش مداوم جریان‌های سرگردان و بررسی روند تغییرات آن‌ها ضرورتی اجتناب‌ناپذیر می‌شود. در این مجال پس از آشنایی با مفهوم پایش وضعیت (CM) و بررسی سیستم نگهداری بر مبنای وضعیت (CBM)، ساختار مهم‌ترین استانداردهای موجود در این زمینه از جمله استاندارد ISO13374 و استاندارد OSA-CBM مورد بررسی و تحلیل قرار گرفت و در نهایت با مد نظر قرار دادن چارچوب استانداردهای مورد اشاره، مدلی به منظور پایش جریان‌های سرگردان در یک سیستم حمل‌ونقل ریلی برقی DC با رویکرد نگهداری مبتنی بر وضعیت ارائه شد.

کلیدواژه‌ها


عنوان مقاله [English]

A Structural Framework for Monitoring Stray Currents in DC Electric Rail Transportation Systems Using a Condition-Based Maintenance (CBM) Approach

نویسندگان [English]

  • Hadi Alinia Gardroudbari 1
  • Seyed Mostafa Ghazizadeh Hashemi 2
  • Shayesteh Ebrahimi Zaker 1
1 Ph.D Student, School of Energy Engineering and Sustainable Resources, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran
2 Dean of the University, Transportation and Traffic of Tehran Municipality. Tehran, Iran
چکیده [English]

In DC electric rail systems, the use of running rails as the return path for the train’s electric current-due to the low electrical resistance (poor insulation) between the running rails and the ground, as well as the potential difference between the rails and the ground-leads to part of the return current leaking into the ground beneath the rails. This phenomenon, known as stray current or leakage current, can cause various issues, including electrochemical corrosion and a reduction in the service life of rails and nearby metallic underground infrastructure. Electrochemical corrosion caused by stray currents in metallic structures is a long-term process, and the results of irregular periodic measurements of stray currents cannot accurately reflect the extent of corrosion. Therefore, continuous measurement and monitoring of stray currents, along with analyzing their variation trends, is essential. This study explores the concept of Condition Monitoring (CM) and Condition-Based Maintenance (CBM), analyzing the structure of key standards in this field, such as ISO 13374 and the OSA-CBM standard. Finally, considering the frameworks of these referenced standards, a model is proposed for monitoring stray currents in a DC electric rail transportation system using a condition-based maintenance approach.

کلیدواژه‌ها [English]

  • Stray current
  • condition monitoring
  • condition-based maintenance
  • ISO 13374
  • OSA-CBM
[1]        R. Feizi, H. Yousefi, M. Abdoos, and F. Razi Astaraei, ‘Technical and environmental assessment of biofuel utilization in light and heavy vehicles: implications for carbon footprint reduction on high-traffic freeway’, Future Sustainability, vol. 3, no. 2, pp. 1–7, May 2025, doi: 10.55670/fpll.fusus.3.2.1.
[2]        H. Yousefi, N. Zakhimi, S. M. Mousavi Reineh, M. Abdoos, and M. Razeghi, ‘Identifying and Ranking the Effective Components in City Branding Emphasizing on the Economic (Case study: Tajrish Neighborhood of Tehran)’, Urban Development Policy Making, vol. 2, no. 1, 2025.
[3]        K. Fardnia, H. Yousefi, and M. Abdoos, ‘A bibliometric analysis of carbon and water footprints in renewable energy: The post-COVID-19 landscape’, Green Technologies and Sustainability, vol. 3, no. 3, p. 100162, Jul. 2025, doi: 10.1016/j.grets.2024.100162.
[4]        E. and M. National Academies of Sciences, Assessing and Improving AI Trustworthiness: Current Contexts and Concerns: Proceedings of a Workshop–in Brief. 2021.
[5]        J. W. Park et al., ‘Rail surface defect detection and analysis using multi-channel eddy current method based algorithm for defect evaluation.’, Journal of Nondestructive Evaluation , vol. 40, pp. 1–12, 2021.
[6]        M. Niyasati, ‘Modeling of electric rail transportation system to determine maximum rail voltage and stray current according to real-world and system conditions [In Persian]’, Iran University of Science and Technology, 2009.
[7]        M. G. A. Niastey, ‘Modeling of DC electric rail transportation system to control stray current and rail contact voltage [In Persian]’, in 21st International Power System Conference, Tehran, Oct. 2006.
[8]        S. Ahmadi, H. Nezhadayni, M. Asvad, and M. Abdoos, ‘Reducing the share of electricity generation from fossil fuels by replacing renewable energies in rainy areas’, Journal of sustainable Energy Systems, vol. 2, no. 3, pp. 299–312, 2024, doi: 10.22059/ses.2024.373595.1056.
[9]        A. Wang, S. Lin, G. Wu, X. Li, and T. Wang, ‘Characteristic Extraction and Assessment Methods for Transformers DC Bias Caused by Metro Stray Currents.’, Entropy, vol. 26, no. 7, 2024.
[10]      C. Li, S. Misra, and I. S. Khalil, ‘Closed‐Loop Control Characterization of Untethered Small‐Scale Helical Device in Physiological Fluid with Dynamic Flow Rates.’, Advanced Intelligent Systems, vol. 5, no. 5, 2023.
[11]      Y. Li, M. Jiao, and Y. Wang, ‘Effect of Soil Salt Content on Stray Current Distribution in Urban Rail Transit’, IEEE Access, vol. 9, 2021.
[12]      A. Y. Jaen-Cuellar et al., ‘System for tool-wear condition monitoring in cnc machines under variations of cutting parameter based on fusion stray flux-current processing’, Sensors, vol. 21, no. 24, 2021.
[13]      H. Varvany Faranpanany, ‘Fundamentals of Design and Implementation of Condition-Based Maintenance and Repair System in Industrial Units - Case Study: Shazand Thermal Power Plant [In Persian]’, in 2nd Condition Monitoring and Fault Diagnosis Conference, Tehran, Jul. 2008.
[14]      N. Ahmed, A. A. Hashmani, S. Khokhar, M. A. Tunio, and M. Faheem, ‘Fault detection through discrete wavelet transform in overhead power transmission lines.’, Energy Science & Engineering , vol. 11, no. 11, pp. 4181–4197, 2023.
[15]      A. Tabrizi, H. Yousefi, M. Abdoos, and R. Ghasempour, ‘Evaluating renewable energy adoption in G7 countries: a TOPSIS-based multi-criteria decision analysis’, Discover Energy, vol. 5, no. 1, p. 2, Jan. 2025, doi: 10.1007/s43937-025-00064-w.
[16]      M. Shimizu, S. Perinpanayagam, and B. Namoano, ‘Real-time techniques for fault detection on railway door systems’, IEEE, pp. 1–9, 2022.
[17]      ‘ISO13374-1, Condition monitoring and diagnostics of machines – data processing, communication and presentation’, 2003.
[18]      Y. Shi et al., ‘Semi-universal geo-crack detection by machine learning’, Frontiers in Earth Science , vol. 11, 2023.
[19]      S. Shimmi and M. Rahimi, ‘On Association of Code Change Types and CI Build Failures in Software Repositories’, European Journal of Information Technologies and Computer Science, vol. 4, no. 2, pp. 1–15, 2024.
[20]      P. Odeyar, D. B. Apel, R. Hall, B. Zon, and K. Skrzypkowski, ‘A review of reliability and fault analysis methods for heavy equipment and their components used in mining’, Energies (Basel), vol. 15, no. 17, 2022.
[21]      H. Koornneef, W. J. Verhagen, and R. Curran, ‘A web-based decision support system for aircraft dispatch and maintenance’, Aerospace, vol. 8, no. 6, p. 154, 2021.
[22]      P. Izquierdo Gomez, M. E. Lopez Gajardo, N. Mijatovic, and T. Dragicevic, ‘A Self-Commissioning Edge Computing Method for Data-Driven Anomaly Detection in Power Electronic Systems’, arXiv e-prints, 2023.
[23]      F. Sohrabi, T. Jiang, and W. Yu, ‘Learning progressive distributed compression strategies from local channel state information’, IEEE J Sel Top Signal Process, vol. 16, no. 3, pp. 573–584, 2022.
[24]      D. Blažević, T. Keser, H. Glavaš, and R. Noskov, ‘Power Transformer Condition-Based Evaluation and Maintenance (CBM) Using Dempster–Shafer Theory (DST)."’, Applied Sciences, vol. 13, no. 11, p. 6731, 2023.
[25]      M. R. U. Abadia, ‘Desenvolvimento de uma base de conhecimento com regras fuzzy e produçao visando monitoramento baseado em condiçao de uma usina hidrelétrica’, 2016.
[26]      British standard, ‘EN50122-2, Railway applications - fixed installations’, 1999.
[27]      C. Wang, W. Li, Y. Wang, S. Xu, and K. Li, ‘Evaluation Model for the Scope of DC Interference Generated by Stray Currents in Light Rail Systems’, Energies (Basel), vol. 12, no. 4, p. 746, Feb. 2019, doi: 10.3390/en12040746.
[28]      S. Feliu, ‘Electrochemical Impedance Spectroscopy for the Measurement of the Corrosion Rate of Magnesium Alloys: Brief Review and Challenges’, Metals (Basel), vol. 10, no. 6, p. 775, Jun. 2020, doi: 10.3390/met10060775.
[29]      R. Barazideh, B. Natarajan, A. V. Nikitin, and S. Niknam, ‘Performance Analysis of Analog Intermittently Nonlinear Filter in the Presence of Impulsive Noise’, IEEE Trans Veh Technol, vol. 68, no. 4, pp. 3565–3573, Apr. 2019, doi: 10.1109/TVT.2019.2896924.
[30]      L. Liu, Z. Yu, Z. Jiang, J. Hao, and W. Liu, ‘Observation Research on the Effect of UHVDC Grounding Current on Buried Pipelines’, Energies (Basel), vol. 12, no. 7, p. 1279, Apr. 2019, doi: 10.3390/en12071279.
[31]      A. Mariscotti, D. Giordano, A. D. Femine, and D. Signorino, ‘Filter Transients onboard DC Rolling Stock and Exploitation for the Estimate of the Line Impedance’, in 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), IEEE, May 2020, pp. 1–6. doi: 10.1109/I2MTC43012.2020.9128903.
[32]      M. Schmucker, A. Reiswich, and M. Haag, ‘A Pipeline for Real-Time Synchronization of Relevant Data in Pediatric Emergencies’, 2024. doi: 10.3233/SHTI240448.
[33]      J. Mc Hugh et al., ‘Diversity of dynamic voltage patterns in neuronal dendrites revealed by nanopipette electrophysiology’, Nanoscale, vol. 15, no. 29, pp. 12245–12254, 2023, doi: 10.1039/D2NR03475A.
[34]      H. Cho, J. Kim, H. Jung, and H. Kim, ‘Simultaneous DC Railway Power System Analysis Method Using Model-Based TPS’, Applied Sciences, vol. 12, no. 14, p. 6929, Jul. 2022, doi: 10.3390/app12146929.
[35]      C. Yao, Q. Zhao, Z. Ma, W. Zhou, and T. Yao, ‘Design and Simulation of an Intelligent Current Monitoring System for Urban Rail Transit’, IEEE Access, vol. 8, pp. 35973–35978, 2020, doi: 10.1109/ACCESS.2020.2975009.
[36]      A. Mariscotti, ‘Stray Current Protection and Monitoring Systems: Characteristic Quantities, Assessment of Performance and Verification’, Sensors, vol. 20, no. 22, p. 6610, Nov. 2020, doi: 10.3390/s20226610.