دسته‌بندی انواع روش‌های رصد و پایش انرژی؛ چارچوبی برای گذار به انرژی‌های تجدیدپذیر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای مهندسی انرژی‌های تجدیدپذیر، لابراتوار مهندسی انرژی‌های تجدیدپذیر، دانشکدۀ مهندسی مکانیک و انرژی، دانشگاه شهید بهشتی، تهران، ایران

2 دانشیار، لابراتوار مهندسی انرژی‌های تجدیدپذیر، دانشکدۀ مهندسی مکانیک و انرژی، دانشگاه شهید بهشتی‌، تهران، ایران

10.22059/ses.2025.392339.1130

چکیده

در قرن بیست و یکم، سامانه‌های انرژی دستخوش تغییر اساسی شده‌اند و منابع تجدیدپذیر به ‌طور فزاینده‌ای جایگزین سوخت‌های فسیلی می‌شوند. برای مدیریت این گذار انرژی، به‌کارگیری روش‌های کارآمد رصد و پایش انرژی ضروری است تا چالش‌هایی مانند پویایی عرضه و تقاضا، برنامه‌ریزی سرمایه‌گذاری و تدوین سیاست‌ها به‌درستی مدیریت شوند. در این پژوهش، بررسی و دسته‌بندی مدل‌های مختلف رصد و پایش انرژی براساس معیارهایی همچون پوشش جغرافیایی، افق زمانی، پوشش بخشی، رویکرد تحلیلی، میزان دسترسی و نیازهای داده‌ای انجام شده است. با تحلیل مطالعه‌های پیشین، روش‌های کلیدی مانند مدل‌سازی پیش‌بینی، تحلیل سناریو، برگشت به عقب و رویکردهای دینامیکی شناسایی شده و کاربردهای آن‌ها در برنامه‌ریزی گذار انرژی مورد بررسی قرار گرفته‌اند. این مطالعه تأکید دارد که درک جامع از مدل‌های مختلف رصد انرژی، عاملی کلیدی در تدوین سیاست‌های پایدار و مقاوم در برابر چالش‌های زیست‌محیطی و اقتصادی روزافزون خواهد بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Classification of Energy Foresight Methods: A Framework for Renewable Energy Transitions

نویسندگان [English]

  • Sara Mahmoodian Younesi 1
  • Majid Zandi 2
1 Phd. Student, Department of Renewable Energies Engineering, Faculty of Mechanical and Energy Engineering, University of Shahid Beheshti, Tehran, Iran
2 Associate Professor, Department of Renewable Energies Engineering, Faculty of Mechanical and Energy Engineering, University of Shahid Beheshti, Tehran, Iran
چکیده [English]

In the twenty first century, energy systems are undergoing a profound transformation as renewable energy sources increasingly replace fossil fuels. Effective energy foresight methods are essential for managing this transition, addressing challenges such as supply-demand dynamics, investment planning, and policy formulation. This study reviews and categorizes various energy foresight models based on multiple criteria, including geographical scope, time horizon, sectoral coverage, analytical approach, accessibility, and data requirements. By analyzing previous studies, we identify key methodologies such as predictive modeling, scenario analysis, back casting, and hybrid approaches, highlighting their applications in energy transition planning. Special attention is given to the role of foresight models in accelerating renewable energy adoption and optimizing its integration into future energy systems. This study emphasizes that a comprehensive understanding of different foresight models is crucial for shaping sustainable and resilient energy policies in the face of growing environmental and economic challenges.

کلیدواژه‌ها [English]

  • Renewable energy
  • Energy foresight methods
  • Energy transition
[1]        T. Mai et al., “A Decision Maker’ s Guide to Evaluating Energy Implementing Body: National Renewable Energy Laboratory,” no. June, 2013.
[2]        P. Laha and B. Chakraborty, “Energy model – A tool for preventing energy dysfunction,” vol. 73, no. April 2016, pp. 95–114, 2017.
[3]        L. M. H. Hall and A. R. Buckley, “A review of energy systems models in the UK : Prevalent usage and categorisation,” Appl Energy, vol. 169, pp. 607–628, 2016.
[4]        M. Giacomo, G. Manzolini, D. Moser, and B. Nastasi, “Classification and challenges of bottom-up energy system models - A review,” Renewable and Sustainable Energy Reviews, vol. 129, p. 109917, 2020, doi: 10.1016/j.rser.2020.109917.
[5]        L. P. Wagner, L. M. Reinpold, M. Kilthau, and A. Fay, “Review article A systematic review of modeling approaches for flexible energy resources,” vol. 184, no. July, 2023.
[6]        K. B. Debnath and M. Mourshed, “Forecasting methods in energy planning models,” vol. 88, no. February, pp. 297–325, 2018.
[7]        N. A. Spyridaki and A. Flamos, “A paper trail of evaluation approaches to energy and climate policy interactions,” Renewable and Sustainable Energy Reviews, vol. 40, pp. 1090–1107, 2014, doi: 10.1016/j.rser.2014.08.001.
[8]        T. Horschig and D. Thrän, “Are decisions well supported for the energy transition? A review on modeling approaches for renewable energy policy evaluation,” 2017, doi: 10.1186/s13705-017-0107-2.
[9]        M. Mrkić-Bosančić, S. Vasković, P. Gvero, and G. Krunić, “Optimal Energy Mix in Relation To Multicriteria Decision-Making (Mcdm), Review and Further Research Directions,” Decision Making: Applications in Management and Engineering, vol. 6, no. 2, pp. 43–73, 2023, doi: 10.31181/dmame622023766.
[10]      “Multi-Criteria Decision Making in Python,” Sustainability Methods. Accessed: Jul. 01, 2024. [Online]. Available: https://sustainabilitymethods.org/index.php/Multi-Criteria_Decision_Making_in_Python
[11]      Y. Yin and J. S. L. Lam, “Bottlenecks of LNG supply chain in energy transition: A case study of China using system dynamics simulation,” Energy, vol. 250, p. 123803, 2022, doi: 10.1016/j.energy.2022.123803.
[12]      M. Bahrami and P. Abbaszadeh, “Development a scenario-based model for Iran ’ s energy future,” vol. 62, pp. 963–970, 2016.
[13]      S. Ahmad, R. Mat, F. Muhammad-sukki, and A. Bakar, “Application of system dynamics approach in electricity sector modelling: A review,” vol. 56, pp. 29–37, 2016.
[14]      C. Li, L. Zhang, Z. Ou, and J. Ma, “Using system dynamics to evaluate the impact of subsidy policies on green hydrogen industry in China,” Energy Policy, vol. 165, no. January, 2022, doi: 10.1016/j.enpol.2022.112981.
[15]      J. Huang, W. Li, and X. Wu, “Forecasting the Hydrogen Demand in China: A System Dynamics Approach,” Mathematics, vol. 10, no. 2, pp. 1–24, 2022, doi: 10.3390/math10020205.
[16]      K. Sani, M. Siallagan, U. S. Putro, and K. Mangkusubroto, “Indonesia energy mix modelling using system dynamics,” 2018. doi: 10.5278/ijsepm.2018.18.3.
[17]      P. Gerber, C. De Oliveira, and C. Augusto, “Risk analysis in energy projects using Bayesian networks : A systematic review,” vol. 47, no. April, 2023.
[18]      H. Dehghan, N. Nahavandi, S. K. Chaharsooghi, J. Zarei, and M. R. Amin-naseri, “A hybrid game theory and system dynamics model to determine optimal electricity generation mix,” vol. 166, no. September, 2022.
[19]      F. Dianat, V. Khodakarami, S. Hosseini, and H. S. G, “Combining game theory concepts and system dynamics for evaluating renewable electricity development in fossil-fuel-rich countries in the Middle East and North Africa,” vol. 190, 2022.
[20]      R. Akpahou, L. D. Mensah, D. A. Quansah, and F. Kemausuor, “Energy planning and modeling tools for sustainable development : A systematic literature review,” vol. 11, no. November 2023, pp. 830–845, 2024.
[21]      L. P. Wagner, L. M. Reinpold, M. Kilthau, and A. Fay, “Review article A systematic review of modeling approaches for flexible energy resources,” vol. 184, no. July, 2023.
[22]      S. Ahmad, R. Mat, F. Muhammad-sukki, and A. Bakar, “Application of system dynamics approach in electricity sector modelling : A review,” vol. 56, pp. 29–37, 2016.
[23]      F. Dianat, V. Khodakarami, S. Hosseini, and H. S. G, “Combining game theory concepts and system dynamics for evaluating renewable electricity development in fossil-fuel-rich countries in the Middle East and North Africa,” vol. 190, 2022.
[24]      K. B. Debnath and M. Mourshed, “Forecasting methods in energy planning models,” vol. 88, no. February, pp. 297–325, 2018.
[25]      D. Shah and M. Thaker, “A Review of Time Series Forecasting Methods,” INTERNATIONAL JOURNAL OF RESEARCH AND ANALYTICAL REVIEWS, vol. 11, p. 749, 2024, doi: 10.1729/Journal.38816.
[26]      P. Manandhar, H. Rafiq, and E. Rodriguez-Ubinas, “Current status, challenges, and prospects of data-driven urban energy modeling: A review of machine learning methods,” Energy Reports, vol. 9, pp. 2757–2776, 2023, doi: https://doi.org/10.1016/j.egyr.2023.01.094.
[27]      M. Giacomo, G. Manzolini, D. Moser, and B. Nastasi, “Classification and challenges of bottom-up energy system models - A review,” Renewable and Sustainable Energy Reviews, vol. 129, p. 109917, 2020, doi: 10.1016/j.rser.2020.109917.
[28]      M. P. Nguyen and T. Ponomarenko, “Energy Transition in Vietnam : A Strategic Analysis and Forecast,” 2024.
[29]      I. Miles, O. Saritas, and A. Sokolov, Foresight for Science, Technology and Innovation. Springer International, 2016.
[30]      P. Manandhar, H. Rafiq, and E. Rodriguez-Ubinas, “Current status, challenges, and prospects of data-driven urban energy modeling: A review of machine learning methods,” Energy Reports, vol. 9, pp. 2757–2776, 2023, doi: https://doi.org/10.1016/j.egyr.2023.01.094.
[31]      “Super Decisions | AHP & ANP Theory.” Accessed: Dec. 23, 2023. [Online]. Available: https://www.superdecisions.com/method/
[32]      “What is the Analytic Hierarchy Process (AHP)? | Passage Technology.” Accessed: Dec. 23, 2023. [Online]. Available: https://www.passagetechnology.com/what-is-the-analytic-hierarchy-process
[33]      W. Weimer-Jehle, “Constructing consistent scenarios using cross-impact balance analysis,” Stuttgart Research Center for Interdisciplinary Risk and Innovation Studies University of Stuttgart Seidenstr, vol. 36, p. 70174, 2016.
[34]      W. Weimer-Jehle, “Cross-impact balances: A system-theoretical approach to cross-impact analysis,” Technol Forecast Soc Change, vol. 73, no. 4, pp. 334–361, 2006, doi: 10.1016/j.techfore.2005.06.005.
[35] M. Jordan, J. Kleinberg, and B. Schölkop, Bayesian Networks and Decision Graphs, Second edi. Springer, 2007.