پایدارسازی ولتاژ شین ریزشبکۀ جریان مستقیم با کنترل نحوۀ شارژ و دشارژ ذخیره‌سازهای موجود در ریزشبکه به روش ANFIS

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی برق، دانشکدۀ فنی و مهندسی، دانشگاه ملایر، ملایر، ایران

2 کارشناسی ارشد، گروه مهندسی برق، دانشکدۀ فنی و مهندسی، دانشگاه ملایر، ملایر، ایران

10.22059/ses.2025.390599.1123

چکیده

در این مقاله پایدارسازی ریزشبکۀ DC مورد بررسی قرار گرفته است. ریزشبکۀ مورد بررسی به صورت جزیره‌ای عمل می‌کند و منبع تولید پراکندۀ مورد استفاده در آن از نوع خورشیدی است. ریزشبکۀ مورد بررسی از چهار بخش عمده تشکیل شده که عبارت‌اند از: منبع تصادفی، بار تصادفی، بار تعادلی و پایدارساز. مهم‌ترین قسمت این مدار، شاخۀ پایدارساز است که از شاخۀ باتری، شاخۀ ابرخازن و شاخۀ تخلیۀ ولتاژ مازاد تشکیل می‌شود. روش‌های مختلفی برای کنترل و پایدارسازی ولتاژ ریزشبکه از جمله استفاده از کنترل‌کنندۀ PI و کنترل فازی وجود دارد. در این مقاله به منظور کاهش ریپل ولتاژ و پایدارسازی ریزشبکه، بهینه‌سازی توابع عضویت کنترل‌کنندۀ فازی با استفاده از الگوریتم بهینه‌سازی مبتنی بر آموزش و یادگیری (TLBO) انجام شده است. خروجی‌های بهینه‌شدۀ کنترل‌کنندۀ فازی با الگوریتم TLBO موجب بهینه‌سازی در نرخ کلیدزنی سه‌ شاخۀ پایدارساز می‌شوند و در نهایت، به کاهش ریپل ولتاژ، کاهش شارژ و دشارژ باتری و افزایش عمر باتری‌ها در ریزشبکه منجر خواهند شد. در این مقاله مدل ریزشبکه مورد بررسی در نرم‌افزار Matlab/Simulink شبیه‌سازی شده و سه روش کنترلی PI، فازی و فازی بهینه‌شده توسط الگوریتم مبتنی بر آموزش و یادگیری مورد بررسی و مقایسه قرار گرفته‌اند.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Bus Voltage Stabilization of DC Microgrid by Controlling the Charging and Discharging of Energy Storage Devices Using ANFIS

نویسندگان [English]

  • Ali Nahavandi 1
  • Hossein Ahmadi Vahed 2
1 Assistant Professor, Department of Electrical Engineering, Faculty of Engineering, Malayer University, Malayer, Iran
2 Master's Graduate, Department of Electrical Engineering, Faculty of Engineering, Malayer University, Malayer, Iran
چکیده [English]

In this paper, stabilization of a DC microgrid is investigated. The examined microgrid operates in an islanded mode, with a solar-based distributed generation source. The microgrid consists of four main components: a stochastic source, a stochastic load, a balancing load, and a stabilizer. The most crucial part of this circuit is the stabilizer branch, which includes a battery branch, a supercapacitor branch, and a voltage excess discharge branch. Various methods exist for controlling and stabilizing the voltage of microgrid, including the use of PI controllers and fuzzy control. In this paper, to reduce voltage ripple and stabilize the microgrid, the optimization of the membership functions of the fuzzy controller is performed using the Teaching-Learning-Based Optimization (TLBO) algorithm. The optimized outputs of the fuzzy controller with the TLBO algorithm lead to improvement in the switching rates of the three stabilizer branches, ultimately resulting in reduced voltage ripple, decreased battery charge and discharge cycles, and increased battery lifespan that is used in microgrid. The model of the examined microgrid is simulated in Matlab/Simulink, and three control methods—PI, fuzzy, and fuzzy optimized by TLBO algorithm—are investigated and compared.

کلیدواژه‌ها [English]

  • Microgrid
  • Distributed Generation Source
  • Fuzzy Controller
  • Teaching Learning Based Optimization (TLBO) Algorithm
[1] Eidiani M, Kargar M. Frequency and voltage stability of the microgrid with the penetration of renewable sources. In: 2022 9th Iranian Conference on Renewable Energy Distributed Generation (ICREDG). IEEE; 2022.
[2] Muchande S, Thale S. Hierarchical control of a low voltage DC microgrid with coordinated power management strategies. Eng Technol Appl Sci Res. 2022;12(1):8045-8052.
[3] Jena S, Padhy NP. Distributed cooperative control for autonomous hybrid AC/DC microgrid clusters interconnected via back-to-back converter control. In: 2020 IEEE Power Energy Society General Meeting (PESGM). IEEE; 2020. p. 1-5.
[4] Thounthong P, Sikkabut S, Luksanasakul A, Koseeyapor P, Sethakul P, Pierfederici S, Davat B. Fuzzy logic based dc bus voltage control of a standalone photovoltaic/fuel cell/super capacitor power plant. In: 11th International Conference on Environment and Electrical Engineering; May 2012. p. 725–730.
[5] Sathishkumar R, Kollimalla S, Mishra M. Dynamic energy management of microgrids using battery super capacitor combined storage. In: India Conference (INDICON); 2012 Annual IEEE; Dec 2012. p. 1078–1083.
[6]  Papadimitriou C, Vovos N. A fuzzy-logic control strategy for a hybrid fuel cell-battery system offering ancillary services. In: 13th European Conference on Power Electronics and Applications; Sept 2009. p. 1–10.
[7] Morstyn T, Herdzak B, Agelidis VG. Distributed cooperative control of microgrid storage. IEEE Trans Power Syst. 2014;29(4):2780-2789.
[8] Jian Z, et al. A review of control strategies for DC micro-grid. In: 2013 Fourth International Conference on Intelligent Control and Information Processing (ICICIP). IEEE; 2013.
[9] Diaz NL, et al. Intelligent distributed generation and storage units for DC microgrids—A new concept on cooperative control without communications beyond droop control. IEEE Trans Smart Grid. 2014;5(5):2476-2485.
[10]. Diaz NL, et al. Fuzzy-logic-based gain-scheduling control for state-of-charge balance of distributed energy storage systems for DC microgrids. In: 2014 IEEE Applied Power Electronics Conference and Exposition (APEC); 2014.
[11] Lu X, et al. State-of-charge balance using adaptive droop control for distributed energy storage systems in DC microgrid applications. IEEE Trans Ind Electron. 2013;61(6):2804-2815.
[12] Kakigano H, Miura Y, Ise T. Distribution voltage control for DC microgrids using fuzzy control and gain-scheduling technique. IEEE Trans Power Electron. 2012;28(5):2246-2258.
[13] Alkawak OA, Saghafi H, Abdullah Albakry AA, Fani B, Delshad M. Regulation of bus voltage on DC microgrid using hybrid technique through charger/discharger storage. Journal of Energy Storage. 2024;101:113620.
[14] Uswarman R, Munawar K, Ramil MAM, Mehedi iM. Bus Voltage Stabilization of a Sustainable Photovoltaic-Fed DC Microgrid with Hybrid Energy Storage Systems. Sustainability. 2024;16(6):1-27.
[15] Wu ZQ, Geng SC, Xie ZK. Bus voltage stability control of DC microgrid considering voltage constraints. Journal of Industrial and Management Optimization. 2024;20(3):1203-1219.
[16] Li X, He Y, Li M. Control Strategy for Bus Voltage in a Wind–Solar DC Microgrid Incorporating Energy Storage. Electronics. 2024;13(24):5018.
[17] Singh PN, Ranjan R, Karanki SB. Stabilization of DC Bus Voltage of an Isolated DC Microgrid. IEEE 8th Southern Power Electronics Conference and 17th Brazilian Power Electronics Conference (SPEC/COBEP); Nov 2023; Florianopolis, Brazil.
[18] Louassaa K, Guerrero JM, Boukerdja M, Chouder A, Khan B, Cherifi A, Yousaf MZ. A novel hierarchical control strategy for enhancing stability of a DC microgrid feeding a constant power load. Scientific Reports. 2025;15:7061.
[19] Rajput AK, Lather JS. Energy Management and DC bus Voltage Stabilization in a HRES based DC Microgrid using HESS. Serbian Journal of Electrical Engineering. 2023;20(2).
[20] Smith RD, Lukowski JT, Weaver W. DC microgrid stabilization through fuzzy control of interleaved heterogeneous storage elements. In: 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL); 2018.
[21] Smith R, Lukowski JT, Weaver W. Fuzzy control of energy storage systems in DC microgrids. In: 2019 20th Workshop on Control and Modeling for Power Electronics (COMPEL); 2019.
[22] Rahimi AM, Emadi A. Discontinuous-conduction mode DC/DC converters feeding constant-power loads. IEEE Trans Ind Electron. 2009;57(4):1318-1329.
[23] Rao RV, Savsani VJ, Vakharia D. Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des. 2011;43(3):303-315.
[24] Rao RV, Savsani VJ, Vakharia D. Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems. Inf Sci. 2012;183(1):1-15.