مدیریت هوشمند انرژی: بهینه‌سازی پنل‌های خورشیدی با قیمت‌گذاری زمان واقعی در ساختمان‌های مسکونی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی سیستم‌های انرژی، دانشکدۀ مهندسی انرژی و منابع پایدار، دانشکدگان علوم و فناوری‌های میان‌رشته‌ای، دانشگاه تهران، تهران، ایران

2 استادیار گروه مهندسی سیستم‌های انرژی پایدار، دانشکدۀ مهندسی انرژی و منابع پایدار، دانشکدگان علوم و فناوری‌های میان‌رشته‌ای، دانشگاه تهران، تهران، ایران

10.22059/ses.2025.390057.1122

چکیده

در سال‌های اخیر، استفاده از منابع تجدیدپذیر، به‌ویژه پنل‌های خورشیدی، به‌ عنوان راهکاری مؤثر برای کاهش آلودگی زیست‌محیطی و تلفات در شبکه‌های انتقال و توزیع برق، مورد توجه قرار گرفته است. این منابع انرژی نه‌تنها به بهبود شرایط زیست‌محیطی کمک می‌کنند، بلکه با کاهش هزینه‌های برق مصرفی در ساختمان‌ها، به بهبود کیفیت زندگی نیز می‌انجامند. در این مطالعه، به منظور مدیریت بهینۀ توان تولیدی پنل‌های خورشیدی و کاهش هزینه‌ها، از الگوریتم بهینه‌سازی ازدحام ذرات بهره گرفته شده است. نتایج شبیه‌سازی نشان می‌دهند پنل خورشیدی با ظرفیت 100 کیلووات در ساعت 11 صبح، 80 کیلووات توان تولید می‌کند و میانگین توان مصرفی روزانه برابر با 9/22 کیلووات ساعت بوده است. همچنین، سیستم توانسته است 8614 کیلووات ساعت انرژی سالانه تولید کند. با در نظر گرفتن قیمت‌گذاری مبتنی بر زمان استفاده و استفاده از الگوریتم ازدحام ذرات، هزینه‌های برق مصرفی به صفر کاهش یافته و امکان فروش برق تولیدی نیز فراهم شده که نشان‌دهندۀ کارایی بالای سیستم در شرایط مختلف است. این پژوهش می‌تواند راهگشای مدیران و سیاست‌گذاران در راستای استفادۀ بهینه از منابع تجدیدپذیر و کاهش هزینه‌های انرژی باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Smart Energy Management: Optimization of Solar Panels with Time-of-Use Pricing in Residential Buildings

نویسندگان [English]

  • Seyed Mostafa Mousavi 1
  • Ali Roghani Araghi 2
1 M.Sc. Student, School of Energy Engineering and Sustainable Resources, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran
2 Assistant Professor, School of Energy Engineering and Sustainable Resources, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran
چکیده [English]

In recent years, the use of renewable energy sources, particularly solar panels, has gained attention as an effective solution for reducing environmental pollution and transmission and distribution network losses. These energy sources not only contribute to improving environmental conditions but also enhance the quality of life by reducing electricity costs in buildings. In this study, a particle swarm optimization algorithm has been employed to optimize the power generation of solar panels and reduce costs. Simulation results indicate that a 100 kW solar panel generates 80 kW of power at 11 a.m., with an average daily power consumption of 22.9 kWh. Moreover, the system has been able to generate 8,614 kWh of energy annually. Considering time-of-use pricing and utilizing the particle swarm optimization algorithm, electricity consumption costs have been reduced to zero, and the possibility of selling the generated electricity has been enabled, demonstrating the system’s high efficiency under various conditions. This research can serve as a valuable guide for managers and policymakers in optimizing the use of renewable resources and reducing energy costs.

کلیدواژه‌ها [English]

  • Energy consumption optimization
  • solar panels
  • sustainable energy
  • residential buildings
  • TOU
[1]        A. Roghani Araghi, S.H. Hosseinian, G.B. Gharehpetian, B. Vahidi, "Employing TCPS for suppressing oscillations in two‐area system constitute of wind farm and thermal system," IEEJ transactions on electrical and electronic engineering, vol. 7, no. 2, pp. 130-135, 2012.
[2]        C.-N. Yu, P. Mirowski, and T. K. Ho, "A sparse coding approach to household electricity demand forecasting in smart grids," IEEE Transactions on Smart Grid, vol. 8, no. 2, pp. 738-748, 2016.
[3]        G. Zhang and J. Guo, "A novel method for hourly electricity demand forecasting," IEEE Transactions on Power Systems, vol. 35, no. 2, pp. 1351-1363, 2019.
[4]        J.-B. Fiot and F. Dinuzzo, "Electricity demand forecasting by multi-task learning," IEEE Transactions on Smart Grid, vol. 9, no. 2, pp. 544-551, 2016.
[5]        H. Jahangir et al., "A novel electricity price forecasting approach based on dimension reduction strategy and rough artificial neural networks," IEEE Transactions on Industrial Informatics, vol. 16, no. 4, pp. 2369-2381, 2019.
[6]        K. Wang, C. Xu, Y. Zhang, S. Guo, and A. Y. Zomaya, "Robust big data analytics for electricity price forecasting in the smart grid," IEEE Transactions on Big Data, vol. 5, no. 1, pp. 34-45, 2017.
[7]        N. Kinhekar, N. P. Padhy, and H. O. Gupta, "Particle swarm optimization based demand response for residential consumers," in 2015 IEEE power & energy society general meeting, 2015: IEEE, pp. 1-5.
[8]        A. Raghavan, P. Maan, and A. K. Shenoy, "Optimization of day-ahead energy storage system scheduling in microgrid using genetic algorithm and particle swarm optimization," Ieee Access, vol. 8, pp. 173068-173078, 2020.
[9]        W. Yu, B. Li, H. Jia, M. Zhang, and D. Wang, "Application of multi-objective genetic algorithm to optimize energy efficiency and thermal comfort in building design," Energy and Buildings, vol. 88, pp. 135-143, 2015.
[10] F. Bre, A. S. Silva, E. Ghisi, and V. D. Fachinotti, "Residential building design optimisation using sensitivity analysis and genetic algorithm," Energy and Buildings, vol. 133, pp. 853-866, 2016.
[11] F. A. Qayyum, M. Naeem, A. S. Khwaja, A. Anpalagan, L. Guan, and B. Venkatesh, "Appliance scheduling optimization in smart home networks," IEEE access, vol. 3, pp. 2176-2190, 2015.
[12] I.-Y. Joo and D.-H. Choi, "Distributed optimization framework for energy management of multiple smart homes with distributed energy resources," Ieee Access, vol. 5, pp. 15551-15560, 2017.
[13] L. Zhou, Y. Zhang, X. Lin, C. Li, Z. Cai, and P. Yang, "Optimal sizing of PV and BESS for a smart household considering different price mechanisms," IEEE access, vol. 6, pp. 41050-41059, 2018.
[14] Q. Hassan, "Evaluation and optimization of off-grid and on-grid photovoltaic power system for typical household electrification," Renewable Energy, vol. 164, pp. 375-390, 2021.
[15] M. Seyedrahimi-Niaraq and T. Nouri, "Investigating the Economic Effects and the Roadmap of Developing Geothermal Systems to Generate Electricity," Journal of Renewable Energy and Environment, vol. 9, no. 3, pp. 52-64, 2022, doi: 10.30501/jree.2022.317375.1290.
[16] A. Naseri, A. Roghani Araghi, M. Razeghi, Y. Noorollahi, "Systematic site selection solar-powered electric vehicle charging stations: A novel approach to sustainable transportation," Energy Strategy Reviews, 56, 101596.
[17] M. Razeghi, A.Roghani Araghi, A. Naseri, H. Yousefi, "Strategic deployment of GIS-optimized solar charging stations for electric vehicles: A multi-criteria decision-making approach", Energy Conversion and Management: X, 24, 100712.
[18] H. K. Ren, M. McCulloch, and D. Wallom, "Optimal sizing of solar photovoltaic and lithium battery storage to reduce grid electricity reliance in buildings," arXiv preprint arXiv:2306.03581, 2023.
[19] A. Kumar, M. Alaraj, M. Rizwan, and U. Nangia, "Novel AI based energy management system for smart grid with RES integration," IEEE Access, vol. 9, pp. 162530-162542, 2021.
[20] B. Sanduru, A. S. Negi, N. Sharma, L. Bhalla, G. Kalele, and A. Vyas, "Particle Swarm Optimization for Sizing of Solar-Wind Hybrid Microgrids," in E3S Web of Conferences, 2024, vol. 537: EDP Sciences, p. 03011.
[21] Y.-C. Hung and G. Michailidis, "Modeling and optimization of time-of-use electricity pricing systems," IEEE transactions on smart grid, vol. 10, no. 4, pp. 4116-4127, 2018.
[22] E. Jahani, S. S. Sadati, and M. Yousefzadeh, "Assessment of solar data estimation models for four cities in Iran," physica status solidi (c), vol. 12, no. 9‐11, pp. 1272-1275, 2015.
[23] N. S. R. Database. https://nsrdb.nrel.gov/ (accessed 02/25/2025).
[24] M. Juneja and S. Nagar, "Particle swarm optimization algorithm and its parameters: A review," in 2016 International Conference on Control, Computing, Communication and Materials (ICCCCM), 2016: IEEE, pp. 1-5.
[25] M. Jaberipour, E. Khorram, and B. Karimi, "Particle swarm algorithm for solving systems of nonlinear equations," Computers & Mathematics with Applications, vol. 62, no. 2, pp. 566-576, 2011.
[26] A. Safari, "A PSO procedure for a coordinated tuning of power system stabilizers for multiple operating conditions," Journal of applied research and technology, vol. 11, no. 5, pp. 665-673, 2013.