کاهش انرژی مصرفی مراکز‌ داده با استفاده از مبدل‌های کولر ترموالکتریک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه مهندسی نوین، دانشکدۀ فناوری‌های نوین دانشگاه محقق اردبیلی، اردبیل، ایران

2 استاد گروه مهندسی مکانیک، دانشکدۀ فنی و مهندسی دانشگاه محقق اردبیلی، اردبیل، ایران

3 دانش‌آموختۀ کارشناسی ارشد مهندسی مکانیک، دانشکدۀ فنی و مهندسی دانشگاه محقق اردبیلی، اردبیل، ایران

10.22059/ses.2025.388860.1115

چکیده

کاهش مصرف انرژی مراکز داده یکی از موارد بسیار مهمی است که باید مورد توجه قرار بگیرد. این مقاله با هدف کاهش انرژی مصرفی این مراکز با استفاده از مبدل کولر ترموالکتریک به رشتۀ تحریر در‌آمده و مقدار کاهش مصرف در مقایسه با عملکرد سیکل تبرید تراکمی در حالت واقعی سنجیده شده است. داده‌های این پژوهش از مرکز دادۀ شرکت ارتباطات مبین نت در بازه‌های زمانی مختلف جمع‌آوری شده است. در این پژوهش چرخۀ تبرید تراکمی با استفاده از مبدل کولر ترموالکتریک طراحی شده و با استفاده از نرم‌افزار EES تحلیل انرژی و اگزرژی روی چرخۀ یادشده و هریک از اجزا صورت گرفته است. بر اساس نتایج به‌دست‌آمده، با استفاده از مبدل کولر ترموالکتریک در چرخۀ تبرید تراکمی، ضریب بازدهی سیکل از 283/3 به 339/3 افزایش یافته است. این جایگزینی تأثیری بر میزان تخریب اگزرژی اجزای سیکل نمی‌گذارد و بازده اگزرژی کل چرخه نیز ثابت می‌ماند، ولی به افزایش بازده سیکل منجر می‌شود که این مورد به کاهش انرژی مصرفی مرکز داده که با سیکل تبرید تراکمی کار می‌کنند، کمک شایانی می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Reducing data center energy consumption using thermoelectric coolers

نویسندگان [English]

  • Mohammad Ebadollahi 1
  • Hadi Ghaebi 2
  • Ali Nayebi 3
1 Assistant Professor, Department of Engineering Sciences, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Ardabil, Iran
2 Professor, Department of Mechanical Engineering, Faculty of Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
3 MSc. Graduate, Department of Mechanical Engineering, Faculty of Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
چکیده [English]

Reducing energy consumption in data centers is one of the most important issues that should be considered. This article is written with the aim of reducing the energy consumption of these centers by using a thermoelectric cooler converter, and this reduction has been measured in comparison with the performance of the compression refrigeration cycle in real conditions. Also, the data of this research has been collected from the data center of Mobinnet Communications Company in different time intervals. In this research, a compression refrigeration cycle using a thermoelectric cooler converter was designed, and energy and exergy analysis was performed on the aforementioned cycle and each of the components using EES software. Based on the results, by using a thermoelectric cooler converter in the compression refrigeration cycle, the cycle efficiency coefficient has increased from 3.283 to 3.339. This replacement did not affect the rate of exergy destruction of the cycle components, and the exergy efficiency of the entire cycle remained constant, but it led to an increase in cycle efficiency, which significantly contributes to reducing the energy consumption of data centers operating with a compression refrigeration cycle.

کلیدواژه‌ها [English]

  • Energy
  • exergy
  • data center
  • cooling demand
[1]        R. Zahedi, Z. Moradipour, and A. Ahmadi, "Optimization of building energy consumption using single and multi-objective particle swarm optimization and genetics algorithms," Journal of Sustainable Energy Systems, vol. 1, no. 2, pp. 111-129, 2022, doi: 10.22059/ses.2022.90568.
[2]        R. Zahedi, A. Gitifar, and A. Ahmadi, "Case study and modeling of energy consumption of buildings on an urban scale using MATLAB software," Journal of Sustainable Energy Systems, vol. 1, no. 3, pp. 265-282, 2022, doi: 10.22059/ses.2023.340522.1003.
[3]        M. Ebadollahi, M. Amidpour, O. Pourali, and H. Ghaebi, "Development of a novel flexible multigeneration energy system for meeting the energy needs of remote areas," Renewable Energy, vol. 198, pp. 1224-1242, 2022/10/01/ 2022, doi: https://doi.org/10.1016/j.renene.2022.08.025.
[4]        T. Chen, X. Gao, and G. Chen, "The features, hardware, and architectures of data center networks: A survey," Journal of Parallel and Distributed Computing, vol. 96, pp. 45-74, 2016.
[5]        Y. Zhang, K. Shan, X. Li, H. Li, and S. Wang, "Research and Technologies for next-generation high-temperature data centers–State-of-the-arts and future perspectives," Renewable and Sustainable Energy Reviews, vol. 171, p. 112991, 2023.
[6]        J. Glanz, "Power, pollution and the internet," The New York Times, vol. 22, 2012.
[7]        J. Rambo and Y. Joshi, "Modeling of data center airflow and heat transfer: State of the art and future trends," Distributed and Parallel Databases, vol. 21, pp. 193-225, 2007.
[8]        J. Koomey, "Growth in data center electricity use 2005 to 2010," A report by Analytical Press, completed at the request of The New York Times, vol. 9, no. 2011, p. 161, 2011.
[9]        K. Ebrahimi, G. F. Jones, and A. S. Fleischer, "A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities," Renewable and sustainable energy reviews, vol. 31, pp. 622-638, 2014.
[10] A. Capozzoli and G. Primiceri, "Cooling systems in data centers: state of art and emerging technologies," Energy Procedia, vol. 83, pp. 484-493, 2015.
[11] S. S. Anandan and V. Ramalingam, "Thermal management of electronics: A review of literature," Thermal science, vol. 12, no. 2, pp. 5-26, 2008.
[12] J. B. Marcinichen, J. A. Olivier, and J. R. Thome, "On-chip two-phase cooling of datacenters: Cooling system and energy recovery evaluation," Applied thermal engineering, vol. 41, pp. 36-51, 2012.
[13] K.-P. Lee and H.-L. Chen, "Analysis of energy saving potential of air-side free cooling for data centers in worldwide climate zones," Energy and buildings, vol. 64, pp. 103-112, 2013.
[14] C. D. Patel, "A vision of energy aware computing from chips to data centers," in The international symposium on micro-mechanical engineering, 2003: Citeseer.
[15] R. R. Schmidt, E. E. Cruz, and M. Iyengar, "Challenges of data center thermal management," IBM Journal of Research and Development, vol. 49, no. 4.5, pp. 709-723, 2005.
[16] M. Ohadi, S. Dessiatoun, K. Choo, M. Pecht, and J. V. Lawler, "A comparison analysis of air, liquid, and two-phase cooling of data centers," in 2012 28th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), 2012: IEEE, pp. 58-63.
[17] A. J. Shah, V. P. Carey, C. E. Bash, and C. D. Patel, "Exergy analysis of data center thermal management systems," 2008.
[18] M. Baghsheikhi and M. Mohammadi, "Experimental investigation of the vapor-compression cooling system in a data center: energy and exergy analysis," Journal of Thermal Analysis and Calorimetry, vol. 148, no. 17, pp. 9079-9097, 2023.
[19] A. J. Díaz, R. Cáceres, J. M. Cardemil, and L. Silva-Llanca, "Energy and exergy assessment in a perimeter cooled data center: The value of second law efficiency," Applied Thermal Engineering, vol. 124, pp. 820-830, 2017.
[20] Q. Zhang et al., "A survey on data center cooling systems: Technology, power consumption modeling and control strategy optimization," Journal of Systems Architecture, vol. 119, p. 102253, 2021/10/01/ 2021, doi: https://doi.org/10.1016/j.sysarc.2021.102253.
[21] M. H. Jahangir, R. Mokhtari, and S. A. Mousavi, "Performance evaluation and financial analysis of applying hybrid renewable systems in cooling unit of data centers – A case study," Sustainable Energy Technologies and Assessments, vol. 46, p. 101220, 2021/08/01/ 2021, doi: https://doi.org/10.1016/j.seta.2021.101220.
[22] X. Qin et al., "Investigating 4E analyses and multi-objective optimization of a novel data center compression/ejection transcritical CO2 cooling system," Applied Thermal Engineering, vol. 264, p. 125477, 2025/04/01/ 2025, doi: https://doi.org/10.1016/j.applthermaleng.2025.125477.
[23] M. Mohsenipour, F. Ahmadi, A. Mohammadi, M. Ebadollahi, and M. Amidpour, "Investigation of a geothermal-based CCHP system from energetic, water usage and CO2 emission viewpoints," Gas Processing Journal, vol. 7, no. 1, pp. 41-52, 2019.
[24] S. Riffat and G. Qiu, "Comparative investigation of thermoelectric air-conditioners versus vapour compression and absorption air-conditioners," Applied Thermal Engineering, vol. 24, no. 14-15, pp. 1979-1993, 2004.
[25] D. R. Brown, T. Stout, J. A. Dirks, and N. Fernandez, "The prospects of alternatives to vapor compression technology for space cooling and food refrigeration applications," Energy Engineering, vol. 109, no. 6, pp. 7-20, 2012.
[26] R. A. Taylor and G. L. Solbrekken, "Comprehensive system-level optimization of thermoelectric devices for electronic cooling applications," IEEE Transactions on components and packaging technologies, vol. 31, no. 1, pp. 23-31, 2008.
[27] W. He, G. Zhang, X. Zhang, J. Ji, G. Li, and X. Zhao, "Recent development and application of thermoelectric generator and cooler," Applied Energy, vol. 143, pp. 1-25, 2015.
[28] R. Zahedi, E. Mohseni, E.  Sadeghitabar, A. Ahmadi, N. Ranjbar, A. Shaghaghi, M.T. Tahooneh, "Optimum planning of hybrid microgrid system connected to the grid using Homer software for Ahvaz city " Journal of Sustainable Energy Systems, vol. 2, no. 2, pp. 183-197, 2023, doi: 10.22059/ses.2024.370277.1049.
[29] H. Rostamzadeh, M. Ebadollahi, H. Ghaebi, and A. Shokri, "Comparative study of two novel micro-CCHP systems based on organic Rankine cycle and Kalina cycle," Energy Conversion and Management, vol. 183, pp. 210-229, 2019/03/01/ 2019, doi: https://doi.org/10.1016/j.enconman.2019.01.003.
[30] P. Yousefi and A. Avami, "Optimal configuration of low‐grade waste heat driven seawater desalination using data envelopment analysis: A case study of industrial application," Environmental Progress & Sustainable Energy, vol. 43, no. 5, p. e14438, 2024.
[31] M.-M. Pazuki, M.-R. Kolahi, M. Ebadollahi, and M. Amidpour, "Enhancing efficiency in an innovative geothermal poly-generation system for electricity, cooling, and freshwater production through integrated multi-objective optimization: A holistic approach to energy, exergy, and enviroeconomic effects," Energy, vol. 313, p. 133862, 2024/12/30/ 2024, doi: https://doi.org/10.1016/j.energy.2024.133862.
[32] M. Ebadollahi, B. Shahbazi, and H. Ghaebi, "Efficiency and flexibility enhancement of nanofluid-based hybrid solar desalination system equipped with thermoelectric generator for eco-friendly freshwater and power cogeneration," Process Safety and Environmental Protection, vol. 190, pp. 108-122, 2024/10/01/ 2024, doi: https://doi.org/10.1016/j.psep.2024.07.077.
[33] M. Ebadollahi, M. Amidpour, O. Pourali, and H. Ghaebi, "Flexibility concept in design of advanced multi-energy carrier systems driven by biogas fuel for sustainable development," Sustainable Cities and Society, vol. 86, p. 104121, 2022/11/01/ 2022, doi: https://doi.org/10.1016/j.scs.2022.104121.
[34] Y. Cao, S. Hamidvand, M. Bezaatpour, M. Ebadollahi, and H. Ghaebi, "Microporous foam, magnetic nanoparticles, and revolutionary tubes: Sophisticated combination of three solar energy materials in flat plate solar collectors," Solar Energy Materials and Solar Cells, vol. 235, p. 111464, 2022/01/01/ 2022, doi: https://doi.org/10.1016/j.solmat.2021.111464.
[35] R. Zahedi, A. Alipour, Y. Salehi, S. Seyfi, M. Ahmadi, A. Ahmadi, A. Shaghaghi, and A. Zahedi, "Sustainable energy supply for medical plant growth using geothermal energy and heat pump," Journal of Sustainable Energy Systems, vol. 2, no. 1, pp. 67-85, 2023, doi: 10.22059/ses.2023.367383.1043.
[36] A. F. Sotoodeh, F. Ahmadi, Z. Ghaffarpour, M. Ebadollahi, H. Nasrollahi, and M. Amidpour, "Performance analyses of a waste-to-energy multigeneration system incorporated with thermoelectric generators," Sustainable Energy Technologies and Assessments, vol. 49, p. 101649, 2022/02/01/ 2022, doi: https://doi.org/10.1016/j.seta.2021.101649.
[37] I. Dincer, "The role of exergy in energy policy making," Energy policy, vol. 30, no. 2, pp. 137-149, 2002.
[38] S. F. Ahmadi, A. Minaei, M. Ebadollahi, H. Ghaebi, and M. H. Shahrivar, "Energy management and reducing the environmental impacts of industrial flare gases using a new trigeneration energy system," Process Safety and Environmental Protection, vol. 177, pp. 1129-1141, 2023/09/01/ 2023, doi: https://doi.org/10.1016/j.psep.2023.07.066.