تحلیل تأثیر انحرافات غیرایده‌آل تجهیزات بر سیستم تولید هم‌زمان زمین‌گرمایی: ارزیابی انرژی، اگزرژی و اقتصادی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی مکانیک، دانشکدۀ فنی مهندسی، دانشگاه آزاد اسلامی ساری

2 گروه مهندسی مکانیک، دانشکدۀ فنی مهندسی، دانشگاه آزاد اسلامی ساری

3 دکتری، گروه مهندسی مکانیک، دانشکدۀ فنی مهندسی، دانشگاه آزاد اسلامی ساری

10.22059/ses.2025.382572.1097

چکیده

در مقالۀ حاضر نوعی سیستم تولید هم‌زمان سیکل آنی ـ باینری زمین‌گرمایی بر پایۀ TRCC بررسی می‌شود. آب داغ تحت فشار وارد جداساز شده که در آن قسمت بخار وارد توربین بخار و قسمت مایع وارد مبدل حرارتی به منظور تولید برودت و حرارت و توان (توربین ORC) می‌شود. نتایج شبیه‌سازی با نرم‌افزار EES نشان داد مبدل حرارتی 1 و کندانسور 1 بیشترین سهم از تخریب اگزرژی را دارند. در رتبۀ بعدی، مبدل حرارتی ‌2 و اجکتور هستند. مشاهده شد که توربین‌های 1 و 2 بیشترین مقادیر نرخ هزینۀ سرمایه‌گذاری را دارند. این نتایج نشان داد ‌تجهیزات مرتبط با انتقال حرارت بیشترین سهم در تخریب اگزرژی و تجهیزات مرتبط با توان بیشترین سهم را در هزینۀ سرمایه‌گذاری دارند. انحراف تجهیزات از حالت ایده‌آل سبب کاهش توان خروجی خالص نیروگاه به میزان 51 درصدی برای توربین 2 و برابر 18 درصد برای توربین 1، پمپ و کمپرسور 18 درصد می‌شود. راندمان‌های انرژی و اگزرژی نیز شامل 9 درصد کاهش برای توربین 2 و برابر 4 درصد کاهش برای توربین 1، پمپ و کمپرسور 4 درصد می‌شوند. بررسی اقتصادی یا اگزرژواکونومیک نیروگاه نشان داد کاهش راندمان توربین 2 سبب افزایش هزینۀ تولید توان از cent/kWh 5/2 به cent/kWh 8/2 شده که آن نوعی افزایش 12 درصدی را نشان می‌دهد. مقادیر افزایش هزینۀ تولید توان برای توربین 1 و پمپ 4 درصد است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analyzing the Impact of Equipment Deviations from Ideal Conditions in a Geothermal CCHP System: An Energy, Exergy, and Economic Assessment

نویسندگان [English]

  • Mohammad Seyyedi 1
  • Farhad Hosseinnejad 2
  • Keyvan Fallah 3
  • Yasser Rostamiyan 3
1 Department of Mechanical Engineering, Sari Branch, Islamic Azad University, Sari, Iran
2 Department of Mechanical Engineering, Sari Branch, Islamic Azad University, Sari, Iran
3 Department of Mechanical Engineering, Sari Branch, Islamic Azad University, Sari, Iran
چکیده [English]

In this paper, a geothermal binary cycle cogeneration system based on TRCC is investigated. Pressurized hot water enters the separator, where the vapor part enters the steam turbine and the liquid part enters the heat exchanger to produce cooling, heating, and power (ORC turbine).The results showed that the irreversibility in heat transfer related equipment including condenser and heat exchanger is more than other equipment. It was observed that reducing the efficiency of turbine number 2 in the ORC cycle to 70% causes a 51% reduction in the net power output. These reduction values ​​for turbine number 1, pump and compressor are 18%. The amount of energy and exergy efficiency decreases by 9% with the deviation of turbine number 2 from the ideal state (decrease in efficiency from 100% to 70%). This reduction is 4% for turbine number 1, pump and compressor equipment. The economic or exergeoeconomic study of the power plant showed that the decrease in the efficiency of turbine number 2 from 100% to 70% caused an increase in the cost of power generation from 2.5 cents/kwh to 2.8 cents/kwh, which shows an increase of 12%. The increase in power production cost for turbine number 1 and pump is 4%.

کلیدواژه‌ها [English]

  • Energy and exergy analysis
  • Exergeoeconomics
  • CCHP
  • Geothermal
[1]        Zare V, Rostamnejad Takleh H. Novel geothermal driven CCHP systems integrating ejector transcritical CO2 and Rankine cycles: Thermodynamic modeling and parametric study. Energy Conversion and Management. 2020;205:112396.
[2]        Boyaghchi FA, Molaie H. Sensitivity analysis of exergy destruction in a real combined cycle power plant based on advanced exergy method. Energy Conversion and Management. 2015;99:374–86.
[3]        Aneke M, Agnew B, Underwood C. Performance analysis of the Chena binary geothermal power plant. Applied Thermal Engineering. 2011;31(10):1825–32.
[4]        Khosravi A, Syri S, Zhao X, Assad MEH. An artificial intelligence approach for thermodynamic modeling of geothermal based-organic Rankine cycle equipped with solar system. Geothermics. 2019;80:138–54.
[5]        DiPippo R. Geothermal power plants: Principles, applications, case studies and environmental impact. Geothermal Power Plants: Principles, Applications, Case Studies and Environmental Impact [No date]. 2012;1–600.
[6]        Ebrahimi M, Keshavarz A, Jamali A. Energy and exergy analyses of a micro-steam CCHP cycle for a residential building. Energy and Buildings. 2012;45:202–10.
[7]        Ahmadi P, Dincer I, Rosen MA. Performance assessment and optimization of a novel integrated multigeneration system for residential buildings. Energy and Buildings. 2013;67:568–78.
[8]        Chaiyat N, Kiatsiriroat T. Analysis of combined cooling heating and power generation from organic Rankine cycle and absorption system. Energy. 2015 Nov 1;91:363–70.
[9]        Darvish K, Ehyaei MA, Atabi F, Rosen MA. Selection of Optimum Working Fluid for Organic Rankine Cycles by Exergy and Exergy-Economic Analyses. Sustainability 2015, Vol 7, Pages 15362-15383 [No date]. 2015;7(11):15362–83.
[10]      Imran M, Usman M, Park BS, Yang Y. Comparative assessment of Organic Rankine Cycle integration for low temperature geothermal heat source applications. Energy. 2016;102:473–90.
[11]      Zhao Y, Wang J. Exergoeconomic analysis and optimization of a flash-binary geothermal power system. Applied Energy. 2016;179:159–70.
[12]      Haghighi A, Pakatchian MR, Assad MEH, Duy VN, Alhuyi Nazari M. A review on geothermal Organic Rankine cycles: modeling and optimization. Journal of Thermal Analysis and Calorimetry. 2021;144(5):1799–814.
[13]      Wang N, Zhang S, Fei Z, Zhang W, Shao L, Sardari F. Thermodynamic performance analysis a power and cooling generation system based on geothermal flash, organic Rankine cycles, and ejector refrigeration cycle; application of zeotropic mixtures. Sustainable Energy Technologies and Assessments. 2020;40:100749.
[14]      Mosaffa AH, Farshi LG. Thermodynamic and economic assessments of a novel CCHP cycle utilizing low-temperature heat sources for domestic applications. Renewable Energy. 2018;120:134–50.
[15]      Mohammadi A, Mehrpooya M. Energy and exergy analyses of a combined desalination and CCHP system driven by geothermal energy. Applied Thermal Engineering. 2017;116:685–94.
[16]      Ghaebi H, Parikhani T, Rostamzadeh H. A novel trigeneration system using geothermal heat source and liquefied natural gas cold energy recovery: Energy, exergy and exergoeconomic analysis. Renewable Energy. 2018;119:513–27.
[17]      Tian MW, Parikhani T, Jermsittiparsert K, Ashraf MA. Exergoeconomic optimization of a new double-flash geothermal-based combined cooling and power (CCP) system at two different cooling temperatures assisted by boosters. Journal of Cleaner Production. 2020;261:120921.
[18]      Ahmadi A, El Haj Assad M, Jamali DH, Kumar R, Li ZX, Salameh T, et al. Applications of geothermal organic Rankine Cycle for electricity production. Journal of Cleaner Production. 2020;274:122950.
[19]      Assad MEH, Aryanfar Y, Radman S, Yousef B, Pakatchian M. Energy and exergy analyses of single flash geothermal power plant at optimum separator temperature. International Journal of Low-Carbon Technologies [No date]. 2021;16(3):873–81.
[20]      Gholizadeh T, Vajdi M, Rostamzadeh H. A new trigeneration system for power, cooling, and freshwater production driven by a flash-binary geothermal heat source. Renewable Energy. 2020;148:31–43.
[21]      Ding P, Zhang K, Yuan Z, Wang Z, Li D, Chen T, et al. Multi-objective optimization and exergoeconomic analysis of geothermal-based electricity and cooling system using zeotropic mixtures as the working fluid. Journal of Cleaner Production. 2021;294:126237.
[22]      Cao Y, Mihardjo LW, Dahari M, Ghaebi H, Parikhani T, Mohamed AM. An innovative double-flash binary cogeneration cooling and power (CCP) system: Thermodynamic evaluation and multi-objective optimization. Energy. 2021;214:118864.
[23]      Wang J, Zhao P, Niu X, Dai Y. Parametric analysis of a new combined cooling, heating and power system with transcritical CO2 driven by solar energy. Applied Energy. 2012;94:58–64.
[24]      Xu XX, Liu C, Fu X, Gao H, Li Y. Energy and exergy analyses of a modified combined cooling, heating, and power system using supercritical CO2. Energy. 2015;86:414–22.
[25]      Lazzaretto A, Tsatsaronis G. SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems. Energy. 2006;31(8–9):1257–89.
[26]      Shamoushaki M, Aliehyaei M, Taghizadeh-Hesary F. Energy, Exergy, Exergoeconomic, and Exergoenvironmental Assessment of Flash-Binary Geothermal Combined Cooling, Heating and Power Cycle. Energies. 2021;14(15):4464.
[27]      Shokati N, Ranjbar F, Yari M. Comparative and parametric study of double flash and single flash/ORC combined cycles based on exergoeconomic criteria. Applied Thermal Engineering. 2015;86:414–22.
[28]      Mabrouk AA, Nafey AS, Fath HES. Thermoeconomic analysis of some existing desalination processes. Desalination. 2007;205(1–3):354–73.
[29]      Cheddie DF, Murray R. Thermo-economic modeling of a solid oxide fuel cell/gas turbine power plant with semi-direct coupling and anode recycling. International Journal of Hydrogen Energy. 2010;35(20):11208–15.
[30]      Zoghi M, Habibi H, Chitsaz A, Javaherdeh K, Ayazpour M. Exergoeconomic analysis of a novel trigeneration system based on organic quadrilateral cycle integrated with cascade absorption-compression system for waste heat recovery. Energy Conversion and Management. 2019;198:111818.
[31]      Mosaffa AH, Farshi LG, Infante Ferreira CA, Rosen MA. Exergoeconomic and environmental analyses of CO2/NH3 cascade refrigeration systems equipped with different types of flash tank intercoolers. Energy Conversion and Management. 2016;117:442–53.
[32]      Mohammadkhani F, Shokati N, Mahmoudi SMS, Yari M, Rosen MA. Exergoeconomic assessment and parametric study of a Gas Turbine-Modular Helium Reactor combined with two Organic Rankine Cycles. Energy. 2014;65:533–43.
[33]      Jain V, Sachdeva G, Kachhwaha SS, Patel B. Thermo-economic and environmental analyses based multi-objective optimization of vapor compression–absorption cascaded refrigeration system using NSGA-II technique. Energy Conversion and Management. 2016;113:230–42.
[34]      Selbaş R, Kizilkan Ö, Şencan A. Thermoeconomic optimization of subcooled and superheated vapor compression refrigeration cycle. Energy. 2006;31(12):2108–28.