[1] A. Rode et al., “Estimating a social cost of carbon for global energy consumption.,” Nature, vol. 598, no. 7880, pp. 308–314, Oct. 2021, doi: 10.1038/s41586-021-03883-8.
[2] E. M. de Oliveira and F. L. Cyrino Oliveira, “Forecasting mid-long term electric energy consumption through bagging ARIMA and exponential smoothing methods,” Energy, vol. 144, pp. 776–788, 2018, doi: https://doi.org/10.1016/j.energy.2017.12.049.
[3] L. K. Chu, “The role of energy security and economic complexity in renewable energy development: evidence from G7 countries,” Environ. Sci. Pollut. Res., vol. 30, no. 19, pp. 56073–56093, 2023, doi: 10.1007/s11356-023-26208-w.
[4] W. Guilian et al., “Forecast of total rural energy demand based on energy consumption intensity,” Front. Energy Res., vol. 10, 2023, doi: 10.3389/fenrg.2022.1021164.
[5] S. Mahjoub, L. Chrifi-Alaoui, B. Marhic, and L. Delahoche, “Predicting Energy Consumption Using LSTM, Multi-Layer GRU and Drop-GRU Neural Networks,” 2022. doi: 10.3390/s22114062.
[6] K. B. Debnath and M. Mourshed, “Forecasting methods in energy planning models,” Renew. Sustain. Energy Rev., vol. 88, pp. 297–325, 2018, doi: https://doi.org/10.1016/j.rser.2018.02.002.
[7] A. Azadeh, S. M. Asadzadeh, M. Saberi, V. Nadimi, A. Tajvidi, and M. Sheikalishahi, “A Neuro-fuzzy-stochastic frontier analysis approach for long-term natural gas consumption forecasting and behavior analysis: The cases of Bahrain, Saudi Arabia, Syria, and UAE,” Appl. Energy, vol. 88, no. 11, pp. 3850–3859, 2011, doi: https://doi.org/10.1016/j.apenergy.2011.04.027.
[8] S. Barak and S. S. Sadegh, “Forecasting energy consumption using ensemble ARIMA–ANFIS hybrid algorithm,” Int. J. Electr. Power Energy Syst., vol. 82, pp. 92–104, 2016, doi: https://doi.org/10.1016/j.ijepes.2016.03.012.
[9] Y. Hang, X. Deyun, and L. Zhentao, “Regional Energy Demand Modeling and Forecasting,” in 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery, 2009, pp. 599–603. doi: 10.1109/FSKD.2009.177.
[10] A. Najafi, H. Falaghi, J. Contreras, and M. Ramezani, “Medium-term energy hub management subject to electricity price and wind uncertainty,” Appl. Energy, vol. 168, pp. 418–433, 2016, doi: https://doi.org/10.1016/j.apenergy.2016.01.074.
[11] A. Manowska, A. Rybak, A. Dylong, and J. Pielot, “Forecasting of natural gas consumption in poland based on ARIMA‐LSTM hybrid model,” Energies, vol. 14, no. 24, 2021, doi: 10.3390/en14248597.
[12] N. Shamsapour, M. Noorollahi, and M. Rezaeifard, “Analysis of economic and environmental policies for global climate change and suggestions for Iran,” J. Sustain. Energy Syst., vol. 2, no. 4, pp. 389–404, 2024, doi: 10.22059/ses.2024.373927.1058.
[13] Saberi, Zafarian, and Rahiminezhad, “Barname toseye haftom [7th Iran Development Plan System],” Māhnāmah-i markaz-i pizhūhish’hā-yi majlis-i shurā-yi Islāmī [ Iran Parlem. Reports], vol. 31, no. 3, 2023, [Online]. Available: https://report.mrc.ir/article_9433.html [In Persian]
[14] Q. Wang, Z. Luo, and P. Li, “Natural Gas Consumption Forecasting Based on Homoheterogeneous Stacking Ensemble Learning,” Sustain., vol. 16, no. 19, 2024, doi: 10.3390/su16198691.
[15] “Iran Energy Balance Report at 2022,” Ministry of Energy (Iran). [Online]. Available: https://pep.moe.gov.ir/ [In Persian]
[16] Ministry of Energy (Iran), “Iran Energy Flowdiagram Report at 2022,” Ministry of Energy (Iran). [Online]. Available: Iran Energy Balance Report at 2022 [In Persian]
[17] “Four Decade Iran Energy Reports,” Ministry of Energy (Iran). [Online]. Available: https://pep.moe.gov.ir [In Persian]