پیش‌بینی مصرف گاز طبیعی در ایران تا سال 1420 با استفاده از مدل ARIMA

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی سیستم‌های انرژی، دانشکدۀ مهندسی انرژی و منابع پایدار، دانشگاه تهران

2 استاد دانشکدۀ مهندسی انرژی و منابع پایدار، دانشگاه تهران

10.22059/ses.2025.389042.1116

چکیده

روند افزایشی مصرف انرژی جهانی به دلیل تغییرات اساسی در صنعت و اقتصاد، مدیریت انرژی و پیش‌بینی تقاضا را ضروری کرده است. گاز طبیعی نه تنها منبع اصلی انرژی است، بلکه یکی از پایه‌های اقتصاد ایران نیز به شمار می‌رود. امنیت انرژی و تأمین پایدار گاز طبیعی، موضوعی پیچیده و حیاتی است که با رشد مصرف و توسعۀ اقتصادی کشور ارتباط دارد، بنابراین، سیاست‌های جامعی برای مدیریت بهینۀ مصرف گاز طبیعی و توسعۀ پایدار لازم است. این سیاست‌ها باید انعطاف‌پذیر و مؤثر باشند تا به تأمین پایدار گاز طبیعی کمک کنند. مدیریت تقاضای گاز طبیعی برای تخصیص بهینۀ منابع و جلوگیری از اتلاف انرژی ضروری است. برای این‌منظور، تکنیک‌های نوینی برای پیش‌بینی مصرف آینده معرفی شده‌اند که به تصمیم‌گیران در برنامه‌ریزی دقیق‌تر کمک می‌کنند. در این پژوهش از مدل میانگین متحرک خودرگرسیون یکپارچه (ARIMA) به‌ عنوان ابزاری پیشرفته برای پیش‌بینی تقاضای انرژی بهره گرفته شده است. این مدل، که نقش کلیدی در تحلیل سری‌های زمانی ایفا می‌کند، در حوزه‌های مختلفی نظیر اقتصاد، انرژی و مدیریت کاربرد فراوان دارد. داده‌های مورد استفاده در این مطالعه، از ترازنامه‌های انرژی وزارت نیرو استخراج شده است. نتایج پژوهش حاکی از آن است که مصرف گاز طبیعی در ایران طی سال‌های ۱۳۶۸ تا ۱۴۰۰ به‌ طور قابل توجهی افزایش یافته است. همچنین، بر اساس پیش‌بینی‌ها، با بازۀ اطمینان ۹۵ درصد، انتظار می‌رود که تا سال ۱۴۲۰ مصرف گاز طبیعی به ۶۹۰٬۳۱۳ میلیون مترمکعب برسد. علاوه بر این، نتایج نشان می‌دهد مصرف گاز طبیعی به‌ طور میانگین بیش از ۴۳ درصد رشد خواهد داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Forecast on Natural Gas Consumption in Iran until 2042 Utilizing the ARIMA Model

نویسندگان [English]

  • Mojtaba Rezaeifard 1
  • Younes Noorollahi 2
1 Master student, School of Energy Engineering and Sustainable Resources, Collage of Interdisciplinary Sciences and technologies, University of Tehran, Tehran, Iran
2 Professor, School of Energy Engineering and Sustainable Resources, Collage of Interdisciplinary Sciences and technologies, University of Tehran, Tehran, Iran
چکیده [English]

The increasing global energy consumption due to fundamental changes in industry and economy has made energy management and demand forecasting essential. Natural gas is not only a major energy source but also one of the foundations of Iran's economy. Energy security and the sustainable supply of natural gas are complex and critical issues closely tied to the country's consumption growth and economic development. Therefore, comprehensive policies for optimal natural gas consumption management and sustainable development are necessary. These policies need to be flexible and effective to ensure a sustainable supply of natural gas. Managing natural gas demand is crucial for the optimal allocation of resources and the prevention of energy waste. To this end, innovative techniques for forecasting future consumption have been introduced, which aid decision-makers in more accurate planning. This research utilizes the AutoRegressive Integrated Moving Average (ARIMA) model as an advanced tool for forecasting energy demand. The ARIMA model plays a pivotal role in time series analysis and finds extensive applications in various fields such as economics, energy, and management. The data utilized in this research was sourced from the energy balance sheets of the Ministry of Energy. The findings reveal that natural gas consumption in Iran has significantly increased during the period from 1989 to 2022. Moreover, the forecasts, with a 95% confidence interval, indicate that natural gas consumption is expected to reach 690,313 million cubic meters by 2042. Additionally, the results show that, on average, natural gas consumption in Iran will experience more than a 43% growth.

کلیدواژه‌ها [English]

  • Energy Demand
  • Energy Forecasting
  • ARIMA Method
  • Natural Gas Consumption
  • Energy Consumption in Iran
[1]        A. Rode et al., “Estimating a social cost of carbon for global energy consumption.,” Nature, vol. 598, no. 7880, pp. 308–314, Oct. 2021, doi: 10.1038/s41586-021-03883-8.
[2]        E. M. de Oliveira and F. L. Cyrino Oliveira, “Forecasting mid-long term electric energy consumption through bagging ARIMA and exponential smoothing methods,” Energy, vol. 144, pp. 776–788, 2018, doi: https://doi.org/10.1016/j.energy.2017.12.049.
[3]        L. K. Chu, “The role of energy security and economic complexity in renewable energy development: evidence from G7 countries,” Environ. Sci. Pollut. Res., vol. 30, no. 19, pp. 56073–56093, 2023, doi: 10.1007/s11356-023-26208-w.
[4]        W. Guilian et al., “Forecast of total rural energy demand based on energy consumption intensity,” Front. Energy Res., vol. 10, 2023, doi: 10.3389/fenrg.2022.1021164.
[5]        S. Mahjoub, L. Chrifi-Alaoui, B. Marhic, and L. Delahoche, “Predicting Energy Consumption Using LSTM, Multi-Layer GRU and Drop-GRU Neural Networks,” 2022. doi: 10.3390/s22114062.
[6]        K. B. Debnath and M. Mourshed, “Forecasting methods in energy planning models,” Renew. Sustain. Energy Rev., vol. 88, pp. 297–325, 2018, doi: https://doi.org/10.1016/j.rser.2018.02.002.
[7]        A. Azadeh, S. M. Asadzadeh, M. Saberi, V. Nadimi, A. Tajvidi, and M. Sheikalishahi, “A Neuro-fuzzy-stochastic frontier analysis approach for long-term natural gas consumption forecasting and behavior analysis: The cases of Bahrain, Saudi Arabia, Syria, and UAE,” Appl. Energy, vol. 88, no. 11, pp. 3850–3859, 2011, doi: https://doi.org/10.1016/j.apenergy.2011.04.027.
[8]        S. Barak and S. S. Sadegh, “Forecasting energy consumption using ensemble ARIMA–ANFIS hybrid algorithm,” Int. J. Electr. Power Energy Syst., vol. 82, pp. 92–104, 2016, doi: https://doi.org/10.1016/j.ijepes.2016.03.012.
[9]        Y. Hang, X. Deyun, and L. Zhentao, “Regional Energy Demand Modeling and Forecasting,” in 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery, 2009, pp. 599–603. doi: 10.1109/FSKD.2009.177.
[10] A. Najafi, H. Falaghi, J. Contreras, and M. Ramezani, “Medium-term energy hub management subject to electricity price and wind uncertainty,” Appl. Energy, vol. 168, pp. 418–433, 2016, doi: https://doi.org/10.1016/j.apenergy.2016.01.074.
[11] A. Manowska, A. Rybak, A. Dylong, and J. Pielot, “Forecasting of natural gas consumption in poland based on ARIMA‐LSTM hybrid model,” Energies, vol. 14, no. 24, 2021, doi: 10.3390/en14248597.
[12] N. Shamsapour, M. Noorollahi, and M. Rezaeifard, “Analysis of economic and environmental policies for global climate change and suggestions for Iran,” J. Sustain. Energy Syst., vol. 2, no. 4, pp. 389–404, 2024, doi: 10.22059/ses.2024.373927.1058.
[13] Saberi, Zafarian, and Rahiminezhad, “Barname toseye haftom [7th Iran Development Plan System],” Māhnāmah-i markaz-i pizhūhish’hā-yi majlis-i shurā-yi Islāmī [ Iran Parlem. Reports], vol. 31, no. 3, 2023, [Online]. Available: https://report.mrc.ir/article_9433.html [In Persian]
[14] Q. Wang, Z. Luo, and P. Li, “Natural Gas Consumption Forecasting Based on Homoheterogeneous Stacking Ensemble Learning,” Sustain., vol. 16, no. 19, 2024, doi: 10.3390/su16198691.
[15] “Iran Energy Balance Report at 2022,” Ministry of Energy (Iran). [Online]. Available: https://pep.moe.gov.ir/ [In Persian]
[16] Ministry of Energy (Iran), “Iran Energy Flowdiagram Report at 2022,” Ministry of Energy (Iran). [Online]. Available: Iran Energy Balance Report at 2022 [In Persian]
[17] “Four Decade Iran Energy Reports,” Ministry of Energy (Iran). [Online]. Available: https://pep.moe.gov.ir [In Persian]